
FileMaker® Server 13
Custom Web Publishing with PHP

© 2007–2013 FileMaker, Inc. All Rights Reserved.
FileMaker, Inc.
5201 Patrick Henry Drive
Santa Clara, California 95054
FileMaker and Bento are trademarks of FileMaker, Inc. registered in the U.S. and other countries. The file folder logo,
FileMaker WebDirect, and the Bento logo are trademarks of FileMaker, Inc. All other trademarks are the property of their
respective owners.
FileMaker documentation is copyrighted. You are not authorized to make additional copies or distribute this
documentation without written permission from FileMaker. You may use this documentation solely with a valid licensed
copy of FileMaker software.
All persons, companies, email addresses, and URLs listed in the examples are purely fictitious and any resemblance to
existing persons, companies, email addresses, or URLs is purely coincidental. Credits are listed in the
Acknowledgements documents provided with this software. Mention of third-party products and URLs is for
informational purposes only and constitutes neither an endorsement nor a recommendation. FileMaker, Inc. assumes
no responsibility with regard to the performance of these products.
For more information, visit our website at http://www.filemaker.com.
Edition: 01

Contents

Preface 6
About this guide 6

Chapter 1
Introducing Custom Web Publishing 7

About the Web Publishing Engine 8
How a Web Publishing Engine request is processed 8

Custom Web Publishing with PHP 9
Custom Web Publishing with XML 9
Comparing PHP to XML 9

Reasons to choose PHP 9
Reasons to choose XML 9

Chapter 2
About Custom Web Publishing with PHP 10

Key features in Custom Web Publishing with PHP 10
Custom Web Publishing requirements 10

What is required to publish a database using Custom Web Publishing 10
What web users need to access a Custom Web Publishing solution 11
Connecting to the Internet or an intranet 11

Manually installing the FileMaker API for PHP 12
Where to go from here 13

Chapter 3
Preparing databases for Custom Web Publishing 14

Enabling Custom Web Publishing with PHP for databases 14
Creating layouts for Custom Web Publishing with PHP 14
Protecting your published databases 15
Accessing a protected database 16
Publishing the contents of container fields on the web 17

Container fields embedded in a database 17
Container fields with referenced files 18
Container fields with externally stored data 18
How web users view container field objects 21

FileMaker scripts and Custom Web Publishing 21
Script tips and considerations 21
Script behavior in Custom Web Publishing solutions 23
Script triggers and Custom Web Publishing solutions 23

Chapter 4
Overview of Custom Web Publishing with PHP 24

How the Web Publishing Engine works with PHP solutions 24
General steps for Custom Web Publishing with PHP 24

4

Chapter 5
Using the FileMaker API for PHP 26

Where to get additional information 26
FileMaker API for PHP Reference 26
FileMaker API for PHP Tutorial 27
FileMaker API for PHP Examples 27

Using the FileMaker class 27
FileMaker class objects 27
FileMaker command objects 28

Connecting to a FileMaker database 28
Working with records 29

Creating a record 29
Duplicating a record 29
Editing a record 29
Deleting a record 30

Running FileMaker scripts 30
Obtaining the list of available scripts 30
Running a FileMaker script 30
Running a script before executing a command 31
Running a script before sorting a result set 31
Running a script after the result set is generated 31
Script execution order 31

Working with FileMaker layouts 32
Using portals 32

Listing the portals defined on a specific layout 32
Obtaining portal names for a specific result object 33
Obtaining information about portals for a specific layout 33
Obtaining information for a specific portal 33
Obtaining the table name for a portal 33
Obtaining the portal records for a specific record 33
Creating a new record in a portal 34
Deleting a record from a portal 34

Using value lists 34
Obtaining the names of all value lists for a specific layout 34
Obtaining an array of all value lists for a specific layout 35
Obtaining the values for a named value list 35

Performing find requests 36
Using the Find All command 36
Using the Find Any command 37
Using the Find command 37
Using a Compound Find command 37
Processing the records in a result set 39
Filtering portal rows returned by find requests 40

Pre-validating commands, records, and fields 40
Pre-validating records in a command 41
Pre-validating records 42
Pre-validating fields 42
Processing the validation errors 42

Handling errors 44

5

Chapter 6
Staging, testing, and monitoring a site 45

Staging a Custom Web Publishing site 45
Testing a Custom Web Publishing site 46
Monitoring your site 47

Using the web server access and error logs 47
Using the Web Publishing Engine log 47
Using the Web Server Module error log 49
Using the Tomcat logs 49

Troubleshooting your site 50

Appendix A
Error codes for Custom Web Publishing with PHP 51

Error code numbers for FileMaker databases 51
Error code numbers for PHP components 58

Index 59

Preface

About this guide
This guide assumes you are experienced with PHP, developing websites, and using
FileMaker® Pro to create databases. You should understand the basics of FileMaker Pro database
design, and should understand the concepts of fields, relationships, layouts, portals, and
containers. For information about FileMaker Pro, see FileMaker Pro Help.
This guide provides the following information about Custom Web Publishing with PHP on
FileMaker Server:
1 what is required to develop a Custom Web Publishing solution using PHP
1 how to publish your databases using PHP
1 what web users need in order to access a Custom Web Publishing solution
1 how to use the FileMaker API for PHP to obtain data from databases hosted by

FileMaker Server

Important You can download PDFs of FileMaker documentation from
http://www.filemaker.com/documentation. Any updates to this document are also available from
the website.

The documentation for FileMaker Server includes the following information:

For information about See
Installing and configuring FileMaker Server FileMaker Server Getting Started Guide

FileMaker Server Help

Making layouts from FileMaker Pro and
FileMaker Pro Advanced databases accessible
to web browser users over an intranet or the
internet

FileMaker WebDirect™ Guide

Custom Web Publishing with PHP FileMaker Server Custom Web Publishing with PHP (this book)

Custom Web Publishing with XML FileMaker Server Custom Web Publishing with XML

Installing and configuring ODBC and JDBC
drivers, and using ODBC and JDBC

FileMaker ODBC and JDBC Guide

SQL statements and standards supported by
FileMaker software

FileMaker SQL Reference

Chapter 1
Introducing Custom Web Publishing
With FileMaker Server, you can publish your FileMaker database on the Internet or an intranet in
these ways.
FileMaker WebDirect: With FileMaker WebDirect, you can quickly and easily publish layouts from
a database on the web. You don’t need to install additional software—with compatible web
browser software and access to the internet or an intranet, web users can connect to your
FileMaker WebDirect solution to view, edit, sort, or search records, if you give them access
privileges.
With FileMaker WebDirect, the host computer must be running FileMaker Server. The user
interface resembles the desktop FileMaker Pro application. The web pages and forms that the
web user interacts with are dependent on the layouts and views defined in the FileMaker Pro
database. For more information, see FileMaker WebDirect Guide.
Static publishing: If your data rarely changes, or if you don’t want users to have a live connection
to your database, you can use static publishing. With static publishing, you export data from a
FileMaker Pro database to create a web page that you can further customize with HTML. The web
page doesn’t change when information in your database changes, and users don’t connect to your
database. (With FileMaker WebDirect, the data is updated in the web browser whenever the data
is updated in the database.) For more information, see FileMaker Pro Help.
Custom Web Publishing: To integrate your FileMaker database with a custom website, use the
Custom Web Publishing technologies available with FileMaker Server. FileMaker Server, which
hosts the published databases, does not require FileMaker Pro to be installed or running for
Custom Web Publishing to be available.
With Custom Web Publishing, you can:
1 Integrate your database with another website
1 Determine how users interact with data
1 Control how data displays in web browsers

FileMaker Server provides two Custom Web Publishing technologies:
1 Custom Web Publishing with PHP: Use the FileMaker API for PHP, which provides an object-

oriented PHP interface to FileMaker Pro databases, to integrate your FileMaker data into a PHP
web application. Because you code the PHP web pages yourself, you have complete control
over the user interface and how the user interacts with the data.

1 Custom Web Publishing with XML: Use XML data publishing to exchange FileMaker data with
other websites and applications. By using HTTP URL requests with FileMaker query
commands and parameters, you can query a database hosted by FileMaker Server, download
the resulting data in XML format, and use the resulting XML data in whatever way you want.

Chapter 1 | Introducing Custom Web Publishing 8
About the Web Publishing Engine

To support FileMaker WebDirect and Custom Web Publishing, FileMaker Server uses a set of
software components called the FileMaker Server Web Publishing Engine. The Web Publishing
Engine handles interactions between a web user’s browser, your web server, and
FileMaker Server.
Custom Web Publishing with XML: Web users access your Custom Web Publishing solution by
clicking an HREF link or by entering a Uniform Resource Locator (URL) that specifies the web
server address and a FileMaker query string request. The Web Publishing Engine returns the XML
data specified in the query string request.
Custom Web Publishing with PHP: When a web user accesses your Custom Web Publishing
solution, PHP on FileMaker Server connects with the Web Publishing Engine and responds
through the FileMaker API for PHP.

How a Web Publishing Engine request is processed

1. A request is sent from a web browser or application to the web server.

2. The web server routes the request through FileMaker’s Web Server Module to the Web
Publishing Engine.

3. The Web Publishing Engine requests data from the database hosted by the Database Server.

4. The FileMaker Server sends the requested FileMaker data to the Web Publishing Engine.

5. The Web Publishing Engine converts the FileMaker data to respond to the request.
1 For PHP requests, the Web Publishing Engine responds to the API request.
1 For XML requests, the Web Publishing Engine sends XML data directly to the web server.

6. The web server sends the output to the requesting web browser or program.

Important Security is important when you publish data on the web. Review the security
guidelines in FileMaker Pro User’s Guide, available as a PDF file from
http://www.filemaker.com/documentation.

Web
Browser

Customers.fmp12

 Database
Server

Products.fmp12

Using the FileMaker Server Web Publishing Engine for Custom Web Publishing

2 3

56 4

1
Web Publishing Engine

Web Publishing Core

Web Server

Web Server Module

FM API and PHP code

Chapter 1 | Introducing Custom Web Publishing 9
Custom Web Publishing with PHP

The FileMaker API for PHP provides an object-oriented PHP interface to FileMaker databases. The
FileMaker API for PHP enables both data and logic stored in a FileMaker Pro database to be accessed
and published on the web, or exported to other applications. The API also supports complex and
compound find commands for extracting and filtering data stored in FileMaker Pro databases.
Originally designed as a procedural programming language, PHP has been enhanced as an object-
oriented web development language. PHP provides programming language functionality for constructing
virtually any type of logic within a site page. For example, you can use conditional logic constructs to
control page generation, data routing, or workflow. PHP also provides for site administration and security.
Custom Web Publishing with XML

FileMaker Custom Web Publishing with XML enables you to send query requests to a FileMaker Pro
database hosted by FileMaker Server, and display, modify, or manipulate the resulting data. Using
an HTTP request with the appropriate query commands and parameters, you can retrieve FileMaker
data as an XML document. You can then export the XML data to other applications.
Comparing PHP to XML

The following sections provide some guidelines for determining the best solution for your site.

Reasons to choose PHP
1 PHP is a more powerful, object-oriented procedural scripting language, but is relatively easy to

learn. There are many resources available for training, development, and support.
1 The FileMaker API for PHP enables data and logic stored in a FileMaker Pro database to be

accessed and published on the web, or exported to other applications.
1 PHP lets you use conditional logic to control page construction or flow.
1 PHP provides programming language functionality for constructing many types of logic on a site

page.
1 PHP is one of the most popular web scripting languages.
1 PHP is an open source language, available at http://php.net.
1 PHP enables access to a wide variety of third-party components that you can integrate into your

solutions.

Reasons to choose XML
1 FileMaker XML request parameter syntax is designed for database interaction, simplifying

solution development.
1 XML is a W3C standard.
1 XML is a machine and human readable format that supports Unicode, enabling data to be

communicated in any written language.
1 XML is well-suited for presenting records, lists and tree-structured data.
1 You can use FMPXMLRESULT for accessing XML data using Custom Web Publishing and for

XML export from FileMaker Pro databases.

Note For more information about Custom Web Publishing with XML, see FileMaker Server
Custom Web Publishing with XML.

Chapter 2
About Custom Web Publishing with PHP
Custom Web Publishing with PHP lets you use the PHP scripting language to integrate data from
FileMaker databases with your customized web page layouts. Custom Web Publishing with PHP
provides the FileMaker API for PHP, which is a PHP class created by FileMaker that accesses
databases hosted by FileMaker Server. This PHP class connects to the FileMaker Server Web
Publishing Engine and makes data available to your web server’s PHP engine.
Key features in Custom Web Publishing with PHP

1 Create web applications that use the Open Source PHP scripting language. Use the FileMaker

Server supported version of PHP 5, or use your own version of PHP 5. (If you select to use your
own version of PHP, see “Manually installing the FileMaker API for PHP” on page 12.)

1 Host databases on FileMaker Server. FileMaker Pro is not required for Custom Web Publishing
because FileMaker Server hosts the databases.

1 Write PHP code that can create, delete, edit, and duplicate records in a hosted FileMaker
database. Your code can perform field and record validation before committing changes back
to the hosted database.

1 Write PHP code that accesses layouts, portals, value lists, and related fields. Like
FileMaker Pro, access to data, layouts, and fields is based on the user account settings defined
in the database’s access privileges. The Web Publishing Engine also supports several other
security enhancements. See “Protecting your published databases” on page 15.

1 Write PHP code that executes complex, multi-step scripts. FileMaker supports over 65 script
steps in Custom Web Publishing. See “FileMaker scripts and Custom Web Publishing” on
page 21.

1 Write PHP code that performs complex find requests.
Custom Web Publishing requirements

This section explains what is required to develop a Custom Web Publishing solution using PHP,
what web users need in order to access a Custom Web Publishing solution, and what impact
hosting a web publishing solution may have on your server.

What is required to publish a database using Custom Web Publishing
To publish databases using Custom Web Publishing with PHP, you need:
1 a FileMaker Server deployment, which includes three components.

1 a web server, either Microsoft IIS (Windows) or Apache (OS X). The FileMaker Web Server
Module is installed on the web server.

1 the FileMaker Web Publishing Engine
1 the FileMaker Database Server

Chapter 2 | About Custom Web Publishing with PHP 11
1 PHP installed on the web server. FileMaker Server can install the supported version of PHP 5,
or you can use your own version. The minimum required version of PHP on OS X is
PHP 5.3.15. The minimum required version of PHP on Windows is PHP 5.3.27. For information
about PHP, see http://php.net. The version of PHP installed on the web server must support
cURL (client URL library) functions. For information about cURL, see http://php.net/curl.

Important When you install the FileMaker Server supported version of PHP 5, it does not
show up in the OS X Server Admin tool; it is not supposed to be listed. If you use the OS X
Server Admin tool to turn on PHP, you disable the FileMaker Server supported version of PHP
5, and enable your own version of PHP.

1 one or more FileMaker Pro databases hosted by FileMaker Server.
1 the IP address or domain name of the host running the web server
1 a web browser and access to the web server to develop and test your Custom Web Publishing

solution
For more information, see FileMaker Server Getting Started Guide.

What web users need to access a Custom Web Publishing solution
To access a Custom Web Publishing solution that uses PHP, web users need:
1 a web browser
1 access to the Internet or an intranet and the web server
1 the IP address or domain name of the host running the web server
If the database is password-protected, web users must also enter a user name and password for
a database account.

Connecting to the Internet or an intranet
When you publish databases on the Internet or an intranet, the host computer must be running
FileMaker Server, and the databases you want to share must be hosted and available. In addition:
1 Publish your database on a computer with a full-time Internet or intranet connection. You can

publish databases without a full-time connection, but they are only available to web users when
your computer is connected to the Internet or an intranet.

1 The host computer for the web server that is part of the FileMaker Server deployment must
have a dedicated static (permanent) IP address or a domain name. If you connect to the
Internet with an Internet service provider (ISP), your IP address might be dynamically allocated
(it is different each time you connect). A dynamic IP address makes it more difficult for web
users to locate your databases. If you are not sure of the type of access available to you, consult
your ISP or network administrator.

Chapter 2 | About Custom Web Publishing with PHP 12
Manually installing the FileMaker API for PHP

When you install FileMaker Server, you are given the option to install the FileMaker supported
version of PHP (PHP 5). If you already have a PHP engine installed and configured and you want
to add only the FileMaker API for PHP, then manually install the FileMaker API for PHP class to
make it available to your PHP scripts.
If you did not install the FileMaker supported version of PHP, be sure to do the following
configuration tasks on your version of the PHP engine:
1 Enable the cURL module in php.ini.
1 Specify the location of the FileMaker API for PHP in the include_path variable in php.ini.
1 If you are accessing databases that contain dates and times, install the pear date package. For

more information, see: http://pear.php.net/package/date/

Note FileMaker Server has been tested with PHP version 5.3.15 for OS X 10.8, with PHP version
5.4.17 for OS X 10.9, and with PHP version 5.3.27 for Windows. For best results, use the
appropriate version of PHP.

To make the FileMaker API for PHP accessible to your PHP scripts

When you installed FileMaker Server, the FileMaker API for PHP package was included as a .zip
file in the following location:
1 For IIS (Windows):
[drive]:\Program Files\FileMaker\FileMaker Server\Web
Publishing\FM_API_for_PHP_Standalone.zip
where [drive] is the drive on which the web server component of your FileMaker server
deployment resides.

1 For Apache (OS X):
/Library/FileMaker Server/Web Publishing/FM_API_for_PHP_Standalone.zip

The FM_API_for_PHP_Standalone.zip file contains a file called FileMaker.php and a folder called
FileMaker. Unzip the file and copy the FileMaker.php file and the FileMaker folder to either of these
locations:
1 the folder where your PHP scripts reside.

1 For IIS (Windows) through HTTP or HTTPS:
[drive]:\Program Files\FileMaker\FileMaker Server\HTTPServer\Conf
where [drive] is the drive on which the Web Publishing Engine component of your
FileMaker server deployment resides.

1 For Apache (OS X) through HTTP:
/Library/FileMaker Server/HTTPServer/htdocs

1 For Apache (OS X) through HTTPS:
/Library/FileMaker Server/HTTPServer/htdocs/httpsRoot

1 one of the include_path directories in your PHP installation. The default location for OS X is
/usr/lib/php.

Chapter 2 | About Custom Web Publishing with PHP 13
Where to go from here

Here are some suggestions to get started developing Custom Web Publishing solutions:
1 Use FileMaker Server Admin Console to enable Custom Web Publishing. See FileMaker

Server Help and FileMaker Server Getting Started Guide.
1 In FileMaker Pro, open each FileMaker database that you want to publish and make sure the

database has the appropriate extended privilege(s) enabled for Custom Web Publishing. See
“Enabling Custom Web Publishing with PHP for databases” on page 14.

1 To learn how to access data in FileMaker databases using the FileMaker API for PHP, see
chapter 5, “Using the FileMaker API for PHP.”

Chapter 3
Preparing databases for Custom Web Publishing
Before you can use Custom Web Publishing with a database, you must prepare the database and
protect it from unauthorized access.
Enabling Custom Web Publishing with PHP for databases

You must enable Custom Web Publishing with PHP in each database you want to publish.
Otherwise, web users cannot use Custom Web Publishing to access the database, even if it is
hosted by a FileMaker Server that is configured to support a Web Publishing Engine.

To enable Custom Web Publishing for a database:

1. In FileMaker Pro, open the database you want to publish using an account with a Full Access
or Manage Extended Privileges privilege set.

2. Assign the fmphp extended privilege to one or more privilege sets to allow Custom Web
Publishing with PHP.

3. Assign the privilege set(s) with the Custom Web Publishing extended privilege to the
appropriate accounts (for example, the Admin and Guest accounts).

Important When defining account names and passwords for Custom Web Publishing
solutions, use printable ASCII characters; for example, a-z, A-Z, and 0-9. For more secure
account names and passwords, include certain non-alphanumeric characters such as an
exclamation point (!) or percent sign (%). Colons (:) are not allowed. For details on setting up
accounts, see FileMaker Pro Help.

4. Using the FileMaker Server Admin Console, verify that hosting is properly configured for the
database, and that it is accessible to the FileMaker Server. See FileMaker Server Help for
instructions.

Note Because Custom Web Publishing with PHP does not use persistent database sessions,
references to an external ODBC data source in the FileMaker Pro relationships graph may limit
the functionality available to your PHP solution. If your database accesses data from an external
SQL data source, you may not be able to update the external table’s record data.
Creating layouts for Custom Web Publishing with PHP

Custom Web Publishing with PHP does not provide direct table access to data in a FileMaker Pro
database, but uses the layouts defined in the databases. While there is no requirement to create
a unique layout for Custom Web Publishing with PHP, creating a layout specifically for a PHP
solution may be beneficial for several reasons:
1 Improve performance by creating a layout that is limited to the fields, labels, calculations, and

portals that you need to include in the PHP solution.
1 Simplify your PHP code by doing less data processing because the records have fewer fields.
1 Separate the interface design work from the data so that you can tailor the interface for the web user.

Chapter 3 | Preparing databases for Custom Web Publishing 15
Protecting your published databases

Custom Web Publishing with PHP enables you to restrict access to your published databases. You
can use these methods:
1 Require passwords for database accounts used for Custom Web Publishing with PHP.
1 Enable the Custom Web Publishing with PHP extended privilege only in those privilege sets for

which you want to allow access.
1 Disable Custom Web Publishing with PHP for a specific database by deselecting the fmphp

extended privilege for all privilege sets in that database. See FileMaker Pro Help.
1 Enable or disable Custom Web Publishing for all Custom Web Publishing solutions in the Web

Publishing Engine using FileMaker Server Admin Console. See FileMaker Server Getting
Started Guide and FileMaker Server Help.

1 Configure your web server to restrict the IP addresses that can access your databases via the
Web Publishing Engine. For example, specify that only web users from the IP address
192.168.100.101 can access your databases. For information on restricting IP addresses, see
the documentation for your web server.

FileMaker Server supports encryption for data written to disk and for data transmitted to clients.
1 Encrypt your database by using the Database Encryption feature of FileMaker Pro Advanced.

Encryption protects the FileMaker database file and any temporary files written to disk. For
more information on encrypting a database, see FileMaker Pro User’s Guide, FileMaker Server
Getting Started Guide, and FileMaker Pro Help.
1 An encrypted database that is hosted by FileMaker Server is opened by using the Admin

Console or the command line interface (CLI). As the FileMaker Server administrator, you
open the file with its database encryption password, so that FileMaker clients can use the
encrypted database.

1 Once the FileMaker encrypted database is opened with the encryption password by the
FileMaker Server administrator, FileMaker clients don’t need the encryption password to
access the encrypted database. For more information about opening an encrypted
database, see FileMaker Server Help.

1 Use Secure Sockets Layer (SSL) encryption for communication between your web server and
web browsers. SSL encryption converts information exchanged between servers and clients
into unintelligible information using mathematical formulas known as ciphers. These ciphers are
used to transform the information back into understandable data through encryption keys. SSL
connections are accessed through an HTTPS connection. No action is required by the client
once they are set up and operational. For information on enabling, configuring, and maintaining
your SSL connections, see the documentation for your web server.

For more information on securing your database, see FileMaker Pro User’s Guide, available as a
PDF file from http://www.filemaker.com/documentation.

Chapter 3 | Preparing databases for Custom Web Publishing 16
Accessing a protected database

Custom Web Publishing with PHP enables you to restrict access to your published databases
through database password protection, database encryption, and secure connections. When a
web user accesses a database using a PHP solution, the PHP code must provide the credentials
to the database using the FileMaker API for PHP. If the Guest account for the database is disabled,
or does not have the fmphp extended privilege enabled, the FileMaker API for PHP returns an
error and your PHP code must provide login information for the user.
The FileMaker API for PHP tutorial includes an example showing how to use the setProperty()
method to set the username and password for a protected database. See “FileMaker API for PHP
Tutorial” on page 27.

The following list summarizes the process that occurs when using Custom Web Publishing to
access a password protected database:
1 If no password has been assigned for a Custom Web Publishing enabled account, the PHP

solution needs to provide the account name only.
1 If the Guest account is disabled, then the PHP solution needs to provide an account name and

password. The PHP solution can either prompt the web user for the account name and
password, or it can store the account name and password in the PHP code. The account must
have the extended privilege fmphp enabled.

1 If the Guest account is enabled and has the fmphp extended privilege enabled:
1 The PHP solution does not need to prompt web users for an account name and password

when opening a file. All web users are automatically logged in with the Guest account and
assume the Guest account privileges.

1 The default privilege set for Guest accounts provides “read-only” access. You can change
the default privileges, including extended privileges, for this account. See FileMaker Pro
Help.

1 The PHP solution can use the Re-Login script step to allow users to log in using a different
account (for example, to switch from the Guest account to an account with more privileges).
See FileMaker Pro Help. However, because PHP connections do not use persistent database
sessions, the PHP solution must store the account name and password to use them for each
subsequent request.

Note By default, web users cannot change their account passwords from a web browser. You
can enable this feature for a database using the Change Password script step, which allows
web users to change their passwords from browser. See FileMaker Pro Help.

Chapter 3 | Preparing databases for Custom Web Publishing 17
Publishing the contents of container fields on the web

The contents of a container field can be embedded in the database, linked by reference using a
relative path, or stored externally.

Container fields embedded in a database
If a container field stores the actual files in the FileMaker database, follow these steps to use the
container field objects in a PHP solution:
1 Use FileMaker API for PHP to define the database object ($fm) with the appropriate credentials

(account name and password).
$fm = new FileMaker();

$fm->setProperty('database', $databaseName);

$fm->setProperty('username', $userName);

$fm->setProperty('password', $passWord);

1 Use the correct HTML tags to indicate the type of web-compatible object that is contained in the
container field, and create a URL string that represents the file path for the HTML tag’s source
attribute.
<IMG src="img.php?-url=<?php echo urlencode($record->getField('Cover
Image')); ?>">

1 Then use the getContainerData() method to retrieve the container field object.
echo $fm->getContainerData($_GET['-url']);

The FileMaker API for PHP tutorial includes additional examples showing how to use container
fields. See “FileMaker API for PHP Tutorial” on page 27.

Notes

1 The Web Publishing Engine supports progressive download of audio files (.mp3), video files
(.mov, .mp4, and .avi recommended), and PDF files for interactive containers. For example, a
web user may start viewing a movie even if the entire movie file has not yet downloaded. To
allow for progressive download, you may need to create the files using options that support
streaming or that optimize for display on the web. For example, create PDF files using the
“Optimize for Web Viewing” option.

1 When the FileMaker Server setting Enable secure connections is not selected, the
connections that FileMaker Server uses to transmit data are not encrypted during transmission.
1 FileMaker clients see the interactive container data with little delay.
1 FileMaker Server decrypts the container field data to a cache folder on the server when a

FileMaker Pro, FileMaker Go, or web client requests the data. The data may remain
decrypted in the cache folder on the server for two hours, until FileMaker Server periodically
empties the cache folder. The data is not cached locally on the client.

1 When the FileMaker Server setting Enable secure connections is selected, FileMaker Server
uses secure connections to transmit data. FileMaker clients completely download the container
data before the user can interact with it. The data is as secure as if the solution were a local
database, since no temporary cache files are created and the data is encrypted during
transmission.

The Database Server must be stopped and restarted when the Enable secure connections
setting is changed in order for the new setting to take effect.

Chapter 3 | Preparing databases for Custom Web Publishing 18
Container fields with referenced files
If a container field stores a file reference, you can use the getContainerData() method to
retrieve the container field objects from the database in your PHP code, or you can use the
getContainerDataURL() method to retrieve a fully qualified URL for the container field object.

You must also follow these steps to publish the referenced files using the Web Publishing Engine:

1. Store the container object files in the Web folder inside the FileMaker Pro folder.

2. In FileMaker Pro, insert the objects into the container field and select the Store only a
reference to the file option.

3. Copy or move the referenced object files in the Web folder to the same relative path location in
the following folder of the web server.
1 For IIS (Windows) through HTTP or HTTPS:
[drive]:\Program Files\FileMaker\FileMaker Server\HTTPServer\Conf
where [drive] is the drive on which the Web Publishing Engine component of your
FileMaker server deployment resides.

1 For Apache (OS X) through HTTP:
/Library/FileMaker Server/HTTPServer/htdocs

1 For Apache (OS X) through HTTP:
/Library/FileMaker Server/HTTPServer/htdocs/httpsRoot

Notes

1 For container objects stored as file references, your web server must be configured to support
the MIME (Multipurpose Internet Mail Extensions) types for the kinds of files you want to serve,
such as movies. Your web server determines the support for the current MIME types registered
for the Internet. The Web Publishing Engine does not change a web server’s support for MIME.
For more information, see the documentation for your web server.

1 All QuickTime movies stored in a container field are stored by reference.

Container fields with externally stored data
If a container field stores objects externally — that is, if you selected Store container data
externally in the Field Options dialog box— your PHP code needs to use the
getContainerDataURL() method to retrieve a fully qualified URL for the container field object.
Use FileMaker API for PHP to define the database object with the appropriate credentials (account
name and password), and then use the getContainerDataURL() method.

Chapter 3 | Preparing databases for Custom Web Publishing 19
Example showing images using HTML img tag

$fm=new FileMaker($database, $hostspec, $user, $password);

$findCommand = $fm->newFindCommand($layout);

$findCommand->addFindCriterion('type', 'png');

$result = $findCommand->execute();

$records = $result->getRecords();

foreach ($records as $record) {

 echo $record->getField('container').'
';

 // For images, use the HTML img tag

 echo '
 getContainerDataURL($record->getField('container')) .'">';

 break;

 }

Example showing embedded data using HTML embed tag

$fm=new FileMaker($database, $hostspec, $user, $password);

$findCommand = $fm->newFindCommand($layout);

$findCommand->addFindCriterion('type', 'pdf');

$result = $findCommand->execute();

$records = $result->getRecords();

foreach ($records as $record) {

 echo $record->getField('container').'
';

 // For movies and PDF files, use the HTML embed tag

 //echo '<embed src="'.$fm->
 getContainerDataURL($record->getField('container')) .'">';

 break;

 }

Uploading container field data to FileMaker Server

When you use FileMaker Pro to upload a database, the externally stored container field data is
uploaded to FileMaker Server as part of the process. See FileMaker Pro Help for information on
transferring the database files to FileMaker Server.
If you manually upload a database that uses a container field with externally stored objects, then
you must follow these steps to publish the externally stored container objects using the Web
Publishing Engine.

Chapter 3 | Preparing databases for Custom Web Publishing 20
To upload a database manually:

1. Place database file in the proper location on the server. Place the FileMaker Pro database files
that you want FileMaker Server to open — or shortcuts (Windows) or aliases (OS X) to those
files — in the following folders:
1 Windows:
[drive]:\Program Files\FileMaker\FileMaker Server\Data\Databases\
where [drive] is the primary drive from which the system is started.

1 OS X: /Library/FileMaker Server/Data/Databases/
Or you can place the files in an optionally specified additional database folder.

2. In the folder where you placed the database, create a folder named RC_Data_FMS, if it doesn’t
already exist.

3. In the RC_Data_FMS folder, create a folder with a name that matches the name of your
database. For example, if your database is named Customers, then create a folder named
Customers. Place the externally stored objects in the new folder you created.

Note When databases are hosted on FileMaker Server, there is no way for multiple databases
to share a common folder of container objects. The container objects for each database needs
to be in a folder identified by that database’s name.

4. For files that will be shared from OS X, change the files to belong to the fmsadmin group.
For more information about manually uploading databases, see FileMaker Server Help.

Notes

1 The Web Publishing Engine supports progressive download of audio files (.mp3), video files
(.mov, .mp4, and .avi recommended), and PDF files for interactive containers. For example, a
web user may start viewing a movie even if the entire movie file has not yet downloaded. To
allow for progressive download, you may need to create the files using options that support
streaming or that optimize for display on the web. For example, create PDF files using the
“Optimize for Web Viewing” option.

1 When the FileMaker Server setting Enable secure connections is not selected, the
connections that FileMaker Server uses to transmit data are not encrypted during transmission.
1 FileMaker clients see the interactive container data with little delay.
1 FileMaker Server decrypts the container field data to a cache folder on the server when a

FileMaker Pro, FileMaker Go, or web client requests the data. The data may remain
decrypted in the cache folder on the server for two hours, until FileMaker Server periodically
empties the cache folder. The data is not cached locally on the client.

1 When the FileMaker Server setting Enable secure connections is selected, FileMaker Server
uses secure connections to transmit data. FileMaker clients completely download the container
data before the user can interact with it. The data is as secure as if the solution were a local
database, since no temporary cache files are created and the data is encrypted during
transmission.

The Database Server must be stopped and restarted when the Enable secure connections
setting is changed in order for the new setting to take effect.

Chapter 3 | Preparing databases for Custom Web Publishing 21
How web users view container field objects
When you publish a database using the Web Publishing Engine, the following limitations apply to
container field objects:
1 Web users cannot modify or add to the contents of container fields. Web users cannot use

container fields to upload objects to the database.
1 For databases that use a container field with thumbnails enabled, the Web Publishing Engine

downloads the full file, not a thumbnail.
FileMaker scripts and Custom Web Publishing

The Manage Scripts feature in FileMaker Pro can automate frequently performed tasks, or
combine several tasks. When used with Custom Web Publishing, FileMaker scripts allow web
users to perform a series of tasks. FileMaker scripts also allow tasks that are not supported in any
other way, such as using the Change Password script step to allow web users to change
passwords from a browser.
FileMaker supports over 65 script steps in Custom Web Publishing. To see script steps that are
not supported, select Custom Web Publishing from the Show Compatibility list in the Edit
Script window in FileMaker Pro. Dimmed script steps are not supported for Custom Web
Publishing. For information on creating scripts, see FileMaker Pro Help.

Script tips and considerations
Although many script steps work identically on the web, there are several that work differently. See
“Script behavior in Custom Web Publishing solutions” on page 23. Before sharing your database,
evaluate all scripts that will be executed from a web browser. Be sure to log in with different user
accounts to make sure they work as expected for all clients.
Keep these tips and considerations in mind:
1 Use accounts and privileges to restrict the set of scripts that a web user can execute. Verify that

the scripts contain only web-compatible script steps, and only provide access to scripts that
should be used from a web browser.

1 Consider the side effects of scripts that execute a combination of steps that are controlled by
access privileges. For example, if a script includes a step to delete records, and a web user
does not log in with an account that allows record deletion, the script will not execute the Delete
Records script step. However, the script might continue to run, which could lead to unexpected
results.

1 In the Edit Script window, select Run script with full access privileges to allow scripts to
perform tasks for which you would not grant access by an individual. For example, you can
prevent users from deleting records by restricting their accounts and privileges, but still allow
users to run a script that would delete certain types of records under conditions predefined
within the script.

Chapter 3 | Preparing databases for Custom Web Publishing 22
1 If your scripts contain steps that are unsupported—for example, steps that are not web-
compatible—use the Allow User Abort script step to determine how subsequent steps are
handled:
1 If the Allow User Abort script step option is enabled (on), unsupported script steps stop the

script from continuing.
1 If Allow User Abort is off, unsupported script steps are skipped and the script continues to

execute.
1 If this script step is not included, scripts are executed as if the feature is enabled, so

unsupported script steps stop scripts.

1 Some scripts that work with one step from a FileMaker Pro client may require an additional
Commit Record/Request step to save the data to the host. Because web users don’t have a
direct connection to the host, they aren’t notified when data changes. For example, features like
conditional value lists aren’t as responsive for web users because the data must be saved to
the host before the effects are seen in the value list field.

1 Any script that modifies data should include the Commit Record/Request step, because data
changes won’t be visible in the browser until the data is saved or “submitted” to the server. This
includes several script steps like Cut, Copy, Paste, and so on. Many single-step actions should
be converted into scripts to include the Commit Record/Request step. When designing scripts
that will be executed from a web browser, include the Commit Record/Request step at the end
of a script to make sure all changes are saved.

1 To create conditional scripts based on the type of client, use the Get(ApplicationVersion)
function. If the value returned includes “Web Publishing Engine” you know that the current user
is accessing your database with Custom Web Publishing. For more information on functions,
see FileMaker Pro Help.

1 After converting your files, you should open each script that web users might run and select
Web Publishing from the Show Compatibility list in the Edit Script window to verify that the
script will execute properly with Instant Web Publishing.

Chapter 3 | Preparing databases for Custom Web Publishing 23
Script behavior in Custom Web Publishing solutions
The following script steps function differently on the web than in FileMaker Pro. For information on
all script steps, see FileMaker Pro Help.

Script triggers and Custom Web Publishing solutions
In FileMaker Pro, both scripts and user actions (such as the user clicking a field) can activate script
triggers. But in Custom Web Publishing, only scripts can activate script triggers. For example, if a
Custom Web Publishing user clicks a field that has an OnObjectEnter script trigger, the trigger is
not activated. However, if a script causes the focus to move to the field, then the OnObjectEnter
script trigger is activated. For more information on script triggers, see FileMaker Pro Help.

Note To specify that you want a script performed when a file is opened, you need to use the
OnFirstWindowOpen script trigger. Similarly, to specify that you want a script performed when a
file is closed, you need to use the OnLastWindowClose script trigger.

Script step Behavior in Custom Web Publishing solutions
Perform Script Scripts cannot perform in other files, unless the files are hosted on FileMaker Server and

Custom Web Publishing is enabled in the other files.

Exit Application Logs off web users, closes all windows, but does not exit the web browser application.

Allow User Abort Determines how unsupported script steps are handled. Enable to stop scripts from
continuing, and disable to skip unsupported steps. See “Script tips and considerations” on
page 21 for more details.
Note Web users cannot abort Custom Web Publishing scripts, but this option allows
unsupported script steps to stop the script from continuing.

Set Error Capture This is always enabled with Custom Web Publishing. Web users cannot abort Custom Web
Publishing scripts.

Pause/Resume script Although these script steps are supported in Custom Web Publishing, you should avoid
using them. When a Pause step is executed, the script pauses. Only a script containing the
Resume script step can make it resume execution. If the script remains in a paused state
until the session times out, then the script will not be completed.

Sort Records You must save a sort order with the Sort Records script step to execute in Custom Web
Publishing.

Open URL This script step has no effect in a Custom Web Publishing solution.

Go to Field You cannot use Go to Field to make a particular field active in the web browser, but you can
use this script step in conjunction with other script steps to perform tasks. For example, you
can go to a field, copy the contents, go to another field and paste the value. To see the effect
in the browser, be sure to save the record with the Commit Record script step.

Commit
Record/Request

Submits the record to the database.

Chapter 4
Overview of Custom Web Publishing with PHP
The FileMaker API for PHP helps you integrate data from FileMaker Pro databases into PHP
solutions. This chapter describes how PHP works with the FileMaker Server Custom Web
Publishing Engine. For more detailed information about the FileMaker API for PHP, see chapter 5,
“Using the FileMaker API for PHP.”
How the Web Publishing Engine works with PHP solutions

FileMaker Server is composed of three components: a web server, the Web Publishing Engine,
and the Database Server. (These components may be deployed on one machine or two machines.
See FileMaker Server Getting Started Guide for information.) FileMaker Server hosts the PHP
solution when you place the PHP files on the web server where the PHP engine is installed.
1 When a web user opens a PHP solution, the web server routes the request to the PHP engine,

which processes the PHP code.
1 If the PHP code contains calls to the FileMaker API for PHP, those calls are interpreted and sent

as requests to the Web Publishing Engine.
1 The Web Publishing Engine requests data from databases that are hosted on the Database

Server.
1 The Database Server sends the requested data to the Web Publishing Engine.
1 The Web Publishing Engine sends the data to the PHP engine on the web server in response

to the API call.
1 The PHP solution processes the data, and displays it for the web user.
General steps for Custom Web Publishing with PHP

Here is a summary of the steps for using Custom Web Publishing with PHP:

1. In the Admin Console, make sure Enable PHP publishing is selected. See FileMaker Server
Getting Started Guide.

2. In the Admin Console, choose the Databases pane and make sure each FileMaker database
that you’re publishing has the fmphp extended privilege enabled for Custom Web Publishing
with PHP.
If necessary, use FileMaker Pro to enable Custom Web Publishing for a database. See
chapter 3, “Preparing databases for Custom Web Publishing.”

Note Make sure that you use equivalent FileMaker database privilege sets when developing
PHP solutions that will be given to the end user. Otherwise, you may have access to layouts
and features in the FileMaker database that will not be available to the end user, causing
inconsistent behavior.

3. Use PHP authoring tools to create your PHP solution, incorporating the FileMaker API functions
into your PHP code to access your FileMaker data. See chapter 5, “Using the FileMaker API for
PHP.”

Chapter 4 | Overview of Custom Web Publishing with PHP 25
4. Copy or move your site directory structure and files to the following folder on the web server.
1 For IIS (Windows) through HTTP or HTTPS:
[drive]:\Program Files\FileMaker\FileMaker Server\HTTPServer\Conf
where [drive] is the drive on which the Web Publishing Engine component of your
FileMaker server deployment resides.

1 For Apache (OS X) through HTTP:
/Library/FileMaker Server/HTTPServer/htdocs

1 For Apache (OS X) through HTTPS:
/Library/FileMaker Server/HTTPServer/htdocs/httpsRoot

5. If a database container field stores a file reference instead of an actual file, the referenced
container object must be stored in the FileMaker Pro Web folder when the record is created or
edited. You must copy or move the object to a folder with the same relative location in the root
folder of the web server software.
See “Publishing the contents of container fields on the web” on page 17.

6. Make sure that security mechanisms for your site or program are in place.

7. Test your site using the same accounts and privileges defined for web users.

8. Make the site available and known to users. The URL that the web user enters follows this format:
http://<server>/<site_path>

1 <server> is the machine on which the FileMaker Server resides
1 <site_path> is the relative path to the home page for your site, determined by the directory

structure you used in step 4 above.
For example, if your web server is 192.168.123.101 and your site home page is on the web server
at c:\Inetpub\wwwroot\customers\index.php, then the web user would enter this URL:
http://192.168.123.101/customers/index.php

Note PHP 5 uses Latin-1 (ISO-8859-1) encoding. FileMaker Server returns Unicode (UTF-8)
data. Use the FileMaker Server Admin Console to specify the default character encoding for your
site. For PHP sites, you can specify either UTF-8 or ISO-8859-1; UTF-8 is recommended. Specify
the same setting for the charset attribute in the <HEAD> section of your site PHP files.

For information on deploying and using a PHP solution, see chapter 6, “Staging, testing, and
monitoring a site.”

Chapter 5
Using the FileMaker API for PHP
The FileMaker API for PHP implements a PHP class—the FileMaker class—that provides an
object-oriented interface to FileMaker databases. The FileMaker API for PHP enables both data
and logic stored in FileMaker Pro databases to be accessed and published on the web, or
exported to other applications.
The FileMaker API for PHP allows PHP code to perform the same kind of functions you already
have available in FileMaker Pro databases:
1 create, delete, edit, and duplicate records
1 perform find requests
1 perform field and record validation
1 use layouts
1 run FileMaker scripts
1 display portals and related records
1 use value lists
This chapter describes how to use the FileMaker class objects and methods to add these common
functions to a PHP solution. This chapter does not cover the entire the FileMaker API for PHP, but
introduces key objects and methods.
Where to get additional information

To learn more about the FileMaker API for PHP, see the following resources.
If you already have a PHP engine installed and configured and you want to add only the FileMaker
API for PHP, see “Manually installing the FileMaker API for PHP” on page 12.

FileMaker API for PHP Reference
If you installed the FileMaker API for PHP, you can find reference information on the web server
component of your FileMaker Server deployment.
1 For IIS (Windows):
[drive]:\Program Files\FileMaker\FileMaker Server\Documentation\PHP
API Documentation\index.html
where [drive] is the drive on which the web server component of your FileMaker server
deployment resides.

1 For Apache (OS X): /Library/FileMaker Server/Documentation/PHP API
Documentation/index.html

Chapter 5 | Using the FileMaker API for PHP 27
FileMaker API for PHP Tutorial
If you installed the FileMaker API for PHP, you can find a tutorial on the web server component of
your FileMaker Server deployment.
1 For IIS (Windows): [drive]:\Program Files\FileMaker\FileMaker
Server\Examples\PHP\Tutorial
where [drive] is the drive on which the web server component of your FileMaker server
deployment resides.

1 For Apache (OS X): /Library/FileMaker Server/Examples/PHP/Tutorial

To host these PHP tutorial files, copy them to the web server root folder.

FileMaker API for PHP Examples
If you installed the FileMaker API for PHP, you can find additional examples on the web server
component of your FileMaker Server deployment.
1 For IIS (Windows): [drive]:\Program Files\FileMaker\FileMaker
Server\Examples\PHP\API Examples
where [drive] is the drive on which the web server component of your FileMaker server
deployment resides.

1 For Apache (OS X): /Library/FileMaker Server/Examples/PHP/API Examples

To host these API example files, copy them to the web server root folder.
Using the FileMaker class

To use the FileMaker class in your PHP solution, add the following statement to your PHP code:
require_once ('FileMaker.php');

FileMaker class objects
The FileMaker class defines class objects that you can use to retrieve data from FileMaker Pro
databases.

Class Object Use the object to
FileMaker database Define the database properties

Connect to a FileMaker Pro database
Get information about the FileMaker API for PHP

Command Create commands that add records, delete records, duplicate records, edit records,
perform find requests, and perform scripts.

Layout Work with database layouts

Record Work with record data

Field Work with field data

Related set Work with portal records

Result Process the records returned from a Find request

Error Check whether an error has occurred
Process any errors

Chapter 5 | Using the FileMaker API for PHP 28
FileMaker command objects
The FileMaker class defines a base command object that you use to instantiate a specific
command and to specify the command’s parameters. To execute the command, you must call the
execute() method.

The FileMaker class defines the following specific commands:
1 Add command
1 Compound Find command
1 Delete command
1 Duplicate command
1 Edit command
1 Find command, Find All command, Find Any command
1 Find Request command, which gets added to a Compound Find command
1 Perform Script command

These commands are described in more detail in the following sections:
1 “Working with records” on page 29
1 “Running FileMaker scripts” on page 30
1 “Performing find requests” on page 36
Connecting to a FileMaker database

The FileMaker class defines a database object that you instantiate in order to connect to a server
or to a database. Define the object properties with the class constructor, or by calling the
setProperty() method.

Example: Connecting to a server to get a list of databases

$fm = new FileMaker();

$databases = $fm->listDatabases();

Example: Connecting to a specific database on a server

The username and password properties determine the privilege set for this connection.
$fm = new FileMaker();

$fm->setProperty('database', 'questionnaire');

$fm->setProperty('hostspec', 'http://192.168.100.110');

$fm->setProperty('username', 'web');

$fm->setProperty('password', 'web');

Note The hostspec property defaults to the value http://localhost. If the PHP engine is
running on the same machine as the web server component of the FileMaker Server deployment,
there is no need to specify the hostspec property. If the PHP engine is on a different machine, use
the hostspec property to specify the location of the web server component of the FileMaker Server
deployment.

Chapter 5 | Using the FileMaker API for PHP 29
Working with records

The FileMaker class defines a record object that you instantiate to work with records. An instance
of a record object represents one record from a FileMaker Pro database. Use a record object with
Add, Delete, Duplicate, and Edit commands to change the data in the record. The Find
commands—Find, Find All, Find Any, and Compound Find—return an array of record objects.

Creating a record
There are two ways to create a record:
1 Use the createRecord() method, specifying a layout name, and optionally specifying an

array of field values. You can also set values individually in the new record object.
The createRecord() method does not save the new record to the database. To save the
record to the database, call the commit() method.
For example:
$rec = $fm->createRecord('Form View', $values);

$result = $rec->commit();

1 Use the Add command. Use the newAddCommand() method to create a
FileMaker_Command_Add object, specifying the layout name and an array with the record
data. To save the record to the database, call the execute() method.
For example:
$newAdd = $fm->newAddCommand('Respondent', $respondent_data);

$result = $newAdd->execute();

Duplicating a record
Duplicate an existing record using the Duplicate command. Use the newDuplicateCommand()
method to create a FileMaker_Command_Duplicate object, specifying the layout name and the
record ID of the record that you want to duplicate. Then, duplicate the record by calling the
execute() method.

Example

$newDuplicate = $fm->newDuplicateCommand('Respondent', $rec_ID);

$result = $newDuplicate->execute();

Editing a record
There are two ways to edit a record:
1 Using the Edit command. Use the newEditCommand() method to create a

FileMaker_Command_Edit object, specifying the layout name, the record ID of the record you
want to edit, and an array of values that you want to update. Then, edit the record by calling the
execute() method.
For example:
$newEdit = $fm->newEditCommand('Respondent', $rec_ID, $respondent_data);

$result = $newEdit->execute();

Chapter 5 | Using the FileMaker API for PHP 30
1 Using a record object. Retrieve a record from the database, change field values, and then edit
the record by calling the commit() method.
For example:
$rec = $fm->getRecordById('Form View', $rec_ID);

$rec->setField('Name', $nameEntered);

$result = $rec->commit();

Deleting a record
There are two ways to delete a record:
1 Retrieve a record from the database, and then call the delete() method.

For example:
$rec = $fm->getRecordById('Form View', $rec_ID);

$rec->delete();

1 Delete an existing record using the Delete command. Use the newDeleteCommand() method
to create a FileMaker_Command_Delete object, specifying the layout name and the record ID
of the record you want to delete. Then, delete the record by calling the execute() method.
For example:
$newDelete = $fm->newDeleteCommand('Respondent', $rec_ID);

$result = $newDelete->execute();
Running FileMaker scripts

A FileMaker script is a named set of script steps. The FileMaker class defines several methods
that allow you to work with FileMaker scripts defined in a FileMaker Pro database. For information
on web-compatible script steps (the script steps that can be performed in a web solution), see
“FileMaker scripts and Custom Web Publishing” on page 21.

Obtaining the list of available scripts
Use the listScripts() method to get a list of available scripts from the currently connected
database. The listScripts() method returns an array of scripts that can be executed by the
username and password specified when the database connection was defined. (See “Connecting
to a FileMaker database” on page 28.)

Example

$scripts = $fm->listScripts();

Running a FileMaker script
Use the newPerformScriptCommand() method to create a
FileMaker_Command_PerformScript object, specifying the layout, script name, and any script
parameters. Then, perform the script by calling the execute() method.

Example

$newPerformScript = $fm->newPerformScriptCommand('Order Summary',
'ComputeTotal');

$result = $newPerformScript->execute();

Chapter 5 | Using the FileMaker API for PHP 31
Running a script before executing a command
Use the setPreCommandScript() method to specify a script that runs before a command is
run. The following example uses a Find command, but you can use the
setPreCommandScript() method with any command.

Example

$findCommand = $fm->newFindCommand('Students');

$findCommand->addFindCriterion('GPA', $searchValue);

$findCommand->setPreCommandScript('UpdateGPA');

$result = $findCommand->execute();

Running a script before sorting a result set
Use the setPreSortScript() method to specify a script that is run after a Find result set is
generated, but before the result set is sorted. For more information, see “Using the Find
command” on page 37.

Example

$findCommand = $fm->newFindCommand('Students');

$findCommand->setPreSortScript('RemoveExpelled');

Running a script after the result set is generated
Use the setScript() method to specify a script that is run after a Find result set is generated.
For more information, see “Using the Find command” on page 37.

Example

$findCommand = $fm->newFindCommand('Students');

$findCommand->setScript('myScript','param1|param2|param3');

Script execution order
You can specify the setPreCommandScript(), setPreSortScript(), and setScript()
methods in conjunction with the setResultLayout() and addSortRule() methods for a
single command. Here is the order in which FileMaker Server and the Web Publishing Engine
process these methods:

1. Run the script specified on the setPreCommandScript() method, if specified.

2. Process the command itself, such as a Find or Delete Record command.

3. Run the script specified on the setPreSortScript() method, if specified.

4. Sort the Find result set, if the addSortRule() method was specified.

5. Process the setResultLayout() method to switch to a different layout, if this is specified.

6. Run the script specified on the setScript() method, if specified.

7. Return the final Find result set.

Chapter 5 | Using the FileMaker API for PHP 32
If one of the above steps generates an error code, the command execution stops; any steps that
follow are not executed. However, any prior steps in the request are still executed.
For example, consider a command that deletes the current record, sorts the records, and then
executes a script. If the addSortRule() method specifies a non-existent field, the request
deletes the current record and returns error code 102 (“Field is missing”), but does not execute
the script.
Working with FileMaker layouts

A layout is the arrangement of fields, objects, pictures, and layout parts that represents the way
information is organized and presented when the user browses, previews, or prints records. The
FileMaker class defines several methods that allow you to work with the layouts defined in a
FileMaker Pro database. You can get information about layouts from several of the FileMaker
class objects.

With this class object Use these methods
Database 1 listLayouts() obtains a list of available layout names.

1 getLayout() obtains a layout object by specifying a layout name.

Layout 1 getName() retrieves the layout name of a specific layout object.
1 listFields() retrieves an array of all field names used in a layout.
1 getFields() retrieves an associative array with the names of all fields as keys, and

the associated FileMaker_Field objects as array values.
1 listValueLists() retrieves an array of value list names.
1 listRelatedSets() retrieves an array of related sets names.
1 getDatabase() returns the name of the database.

Record 1 getLayout() returns the layout object associated with a specific record.

Field 1 getLayout() returns the layout object containing specific field.

Command 1 setResultLayout() returns the command’s results in a layout different from the
current layout.
Using portals

A portal is table that displays rows of data from one or more related records. The FileMaker class
defines a related set object and several methods that allow you to work with portals defined in a
FileMaker Pro database.
A related set object is an array of record objects from the related portal; each record object
represents one row of data in the portal.

Listing the portals defined on a specific layout
For a specific layout object, use the listRelatedSets() method to retrieve a list of table
names for all portals defined in this layout.

Example

$tableNames = $currentLayout->listRelatedSets();

Chapter 5 | Using the FileMaker API for PHP 33
Obtaining portal names for a specific result object
For a specific FileMaker_Result object, use the getRelatedSets() method to retrieve the
names of all portals in this record.

Example

$relatedSetsNames = $result->getRelatedSets();

Obtaining information about portals for a specific layout
For a specific layout object, use the getRelatedSets() method to retrieve an array of
FileMaker_RelatedSet objects that describe the portals in the layout. The returned array is an
associative array with the table names as the array keys, and the associated
FileMaker_RelatedSet objects as the array values.

Example

$relatedSetsArray = $currentLayout->getRelatedSets();

Obtaining information for a specific portal
For a specific layout object, use the getRelatedSet() method to retrieve the
FileMaker_RelatedSet object that describes a specific portal.

Example

$relatedSet = $currentLayout->getRelatedSet('customers');

Obtaining the table name for a portal
For a related set object, use the getName() method to get the table name for the portal.

Example

$tableName = $relatedSet->getName();

Obtaining the portal records for a specific record
For a specific record object, use the getRelatedSet() method to retrieve an array of related
records for a specific portal on that record.

Example

$relatedRecordsArray = $currentRecord->getRelatedSet('customers');

Chapter 5 | Using the FileMaker API for PHP 34
Creating a new record in a portal
Use the newRelatedRecord() method to create a new record in the specified related set, and
commit the change to the database by calling the commit() method.

Example

//create a new portal row in the 'customer' portal

$new_row = $currentRecord->newRelatedRecord('customer');

//set the field values in the new portal row

$new_row->setField('customer::name', $newName);

$new_row->setField('customer::company', $newCompany);

$result = $new_row->commit();

Deleting a record from a portal
Use the delete() method to delete a record in a portal.

Example

$relatedSet = $currentRecord->getRelatedSet('customers');

/* Runs through each of the portal rows */

foreach ($relatedSet as $nextRow) {

$nameField = $nextRow->getField('customer::name')

if ($nameField == $badName) {

$result = $newRow->delete();

}

}

Using value lists

A value list is set of predefined choices. The FileMaker class defines several methods that allow
you to work with value lists defined in a FileMaker Pro database.

Obtaining the names of all value lists for a specific layout
For a specific layout object, use the listValueLists() method to retrieve an array that
contains value list names.

Example

$valueListNames = $currentLayout->listValueLists();

Chapter 5 | Using the FileMaker API for PHP 35
Obtaining an array of all value lists for a specific layout
For a specific layout object, use the getValueListsTwoFields() method to retrieve an array
containing the values from all value lists. The returned array is an associative array. The array keys
are the value list names, and the array values are associative arrays that list the display names
and their corresponding choices from each value list.

Example

$valueListsArray = $currentLayout->getValueListsTwoFields();

Note Although the getValueLists() method is still supported in the FileMaker API for PHP,
it will be deprecated. Instead, use the getValueListsTwoFields() method.

Obtaining the values for a named value list
For a specific layout object, use the getValueListTwoFields() method to get an array of
choices defined for the named value list. The returned array is an associative array that contains
the displayed values from the second field of the value list as the keys, and the associated stored
values from the first field as the array values.
Depending on the options selected in the Specify Fields for Value List dialog box in the FileMaker
database, the getValueListTwoFields() method returns the value in the first field only, the
value in the second field only, or the values in both fields of a value list as the stored and displayed
values.
1 If Also display values from second field is not selected, the getValueListTwoFields()

method returns the value from the first field of the value list as both the stored value and the
displayed value.

1 If Also display values from second field and Show values only from second field are both
selected, the getValueListTwoFields() method returns the value from the first field as
the stored value, and the value from the second field as the displayed value.

1 If Also display values from second field is selected and Show values only from second
field is not selected, the getValueListTwoFields() method returns the value from the first
field as the stored value, and both values from the first and second fields as the displayed value.

Use an iterator with the getValueListTwoFields() method to find the displayed value and
stored value.

Example

$layout = $fm->getLayout('customers');

$valuearray = $layout->getValueListTwoFields("region", 4);

foreach ($valuearray as $displayValue => $value) {

....

}

Notes

1 Although the getValueList() method is still supported in the FileMaker API for PHP, it will
be deprecated. Instead, use the getValueListTwoFields() method.

1 When using the getValueListTwoFields() method, be sure to use a foreach loop to loop
through the associative array. Do not use a for loop because it can return unexpected results.

Chapter 5 | Using the FileMaker API for PHP 36
Performing find requests

The FileMaker class defines four kinds of Find command objects:
1 Find All command. See “Using the Find All command” on page 36.
1 Find Any command. See “Using the Find Any command” on page 37.
1 Find command. See “Using the Find command” on page 37.
1 Compound Find command. See “Using a Compound Find command” on page 37.

The FileMaker class also defines several methods that can be used for all four types of Find
commands:
1 Use the addSortRule() method to add a rule defining how the result set is sorted. Use the
clearSortRules() method to clear all sort rules that have been defined.

1 Use the setLogicalOperator() method to change between logical AND searches and
logical OR searches.

1 Use the setRange() method to request only part of the result set. Use the getRange()
method to retrieve the current range definition.
Using the setRange() method can improve the performance of your solution by reducing the
number records that are returned by the Find request. For example, if a Find request returns
100 records, you can split the result set into five groups of 20 records each rather than
processing all 100 records at once.

1 You can execute FileMaker scripts in conjunction with Find commands.
1 To run a script before executing the Find command, use the setPreCommandScript()

method.
1 To run a script before sorting the result set, use the setPreSortScript() method.
1 To run a script after a result set is generated, but before the result set is sorted, use the
setScript() method.

Using the Find All command
Use the Find All command to retrieve all records from a specified layout. Use the
newFindAllCommand() method, specifying a specific layout, to create a
FileMaker_Command_FindAll object. Then, perform the find request by calling the execute()
method.

Example

$findCommand = $fm->newFindAllCommand('Form View');

$result = $findCommand->execute;

Note When using the Find All command, avoid computer memory overload problems by
specifying a default maximum number of records to return per page.

Chapter 5 | Using the FileMaker API for PHP 37
Using the Find Any command
Use the Find Any command to retrieve one random record from a specified layout. Use the
newFindAnyCommand() method, specifying a specific layout, to create a
FileMaker_Command_FindAny object. Then, perform the find request by calling the execute()
method.

Example

$findCommand = $fm->newFindAnyCommand('Form View');

$result = $findCommand->execute;

Using the Find command
Use the newFindCommand() method, specifying a specific layout, to create a
FileMaker_Command_Find object. Then, perform the find request by calling the execute()
method.
Use the addFindCriterion() method to add criteria to the find request. Use the
clearFindCriteria() method to clear all find criteria that have been defined.

Example - Finding a record by field name

$findCommand = $fm->newFindCommand('Form View');

$findCommand->addFindCriterion('Questionnaire ID', $active_questionnaire_id);

$result = $findCommand->execute();

Example - Adding a sort order

$findCommand = $fm->newFindCommand('Customer List');

$findCommand->addSortRule('Title', 1, FILEMAKER_SORT_ASCEND);

$result = $findCommand->execute();

Using a Compound Find command
The Compound Find command lets you combine multiple Find Request objects into one
command.

To create a Compound Find command:
1 Create a FileMaker_Command_CompoundFind object by calling the
newCompoundFindCommand() method.

1 Create one or more FileMaker_Command_FindRequest objects by calling the
newFindRequest() method.

1 Use the setOmit() method to indicate records in the result set of a specific Find Request that
are to be omitted from the final result set.

1 Use the add() method to add the Find Request objects to the Compound Find command
object.

1 Perform the Compound Find command by calling the execute() method.

Chapter 5 | Using the FileMaker API for PHP 38
Example - Compound Find command

// Create the Compound Find command object

$compoundFind = $fm->newCompoundFindCommand('Form View');

// Create first find request

$findreq1 = $fm->newFindRequest('Form View');

// Create second find request

$findreq2 = $fm->newFindRequest('Form View');

// Create third find request

$findreq3 = $fm->newFindRequest('Form View');

// Specify search criterion for first find request

$findreq1->addFindCriterion('Quantity in Stock', '<100');

// Specify search criterion for second find request

$findreq2->addFindCriterion('Quantity in Stock', '0');

$findreq2->setOmit(true);

// Specify search criterion for third find request

$findreq3->addFindCriterion('Cover Photo Credit', 'The London Morning News');

$findreq3->setOmit(true);

// Add find requests to compound find command

$compoundFind->add(1,$findreq1);

$compoundFind->add(2,$findreq2);

$compoundFind->add(3,$findreq3);

// Set sort order

$compoundFind->addSortRule('Title', 1, FILEMAKER_SORT_DESCEND);

// Execute compound find command

$result = $compoundFind->execute();

// Get records from found set

$records = $result->getRecords();

// Print number of records found

echo 'Found '. count($records) . " results.

";

Chapter 5 | Using the FileMaker API for PHP 39
Processing the records in a result set
1 Retrieve an array containing each record in the result set by calling the getRecords()

method. Each member of the array is a FileMaker_Record object, or an instance of the class
name set in the API for instantiating records. The array may be empty if the result set contains
no records.

1 Get a list of field names for all fields in the result set by calling the getFields() method. The
method returns only the field names. If you need additional information about the fields, use the
associated layout object.

1 Get the number of records in the entire found set by calling the getFoundSetCount()
method.

1 Get the number of records in the filtered found set by calling the getFetchCount() method.
If no range parameters were specified on the Find command, then this value is equal to the
result of the getFoundSetCount() method. It is always equal to the value of
count($response->getRecords()).

1 For a specific record, use the getField() method to return the contents of a field as a string.
1 For a specific record, use the getFieldAsTimestamp() method to return the contents of a

field as a Unix timestamp (the PHP internal representation of a date).
1 If the field is a date field, the timestamp is for the field date at midnight.
1 If the field is a time field, the timestamp is for that time on January 1, 1970.
1 If the field is a timestamp field, the FileMaker timestamp value maps directly to the Unix

timestamp.
1 If the specified field is not a date or time field, or if the timestamp generated would be out of

range, the getFieldAsTimestamp() method return a FileMaker_Error object.
1 For a specific record, use the getContainerData() method to return a container field object

as binary data:
<IMG src=”img.php?-url=<?php echo urlencode($record->getField('Cover
Image')); ?>”>

echo $fm->getContainerData($_GET['-url']);

1 For a specific record, use the getContainerDataURL() method to return a fully qualified
URL for the container field object:
// For images, use the HTML img tag

 echo '
getContainerDataURL($record->getField('container')) .'">';

// For movies and PDF files, use the HTML embed tag

 //echo '<embed src="'.$fm->
getContainerDataURL($record->getField('container')) .'">';

Chapter 5 | Using the FileMaker API for PHP 40
Filtering portal rows returned by find requests
In a solution that has many related records, querying and sorting portal records can be time
consuming. To restrict the number of records to display in a related set, use the
setRelatedSetsFilters() method with find requests. The setRelatedSetsFilters()
method takes two arguments:
1 a related sets filter value: layout or none.

1 If you specify the value none, the Web Publishing Engine returns all rows in the portal, and
portal records are not presorted.

1 If you specify the value layout, then the settings specified in the FileMaker Pro Portal Setup
dialog box are respected. The records are sorted based on the sort defined in the Portal
Setup dialog box, with the record set filtered to start with the initial row specified.

1 the maximum number of portal records returned: an integer value or all.
1 This value is used only if the Show Vertical Scroll Bar setting is enabled in the Portal Setup

dialog box. If you specify an integer value, that number of rows after the initial row are
returned. If you specify all, the Web Publishing Engine returns all of the related records.

1 If the Show Vertical Scroll Bar setting is disabled, the Portal Setup dialog box’s Number of
rows setting determines the maximum number of related records that are returned.
Pre-validating commands, records, and fields

The FileMaker class lets you pre-validate field data in a PHP solution on the web server before
committing the data to the database.
When deciding whether to use pre-validation, consider the number of data values that the web
user is entering. If the user is updating a small number of fields, then you could improve
performance by not using pre-validation. But if the user is entering data for many fields, then pre-
validation can keep the user from being frustrated by having a record rejected by the database for
validation errors.

With the FileMaker class, the PHP engine pre-validates the following field constraints:
1 not empty

Valid data is a non-empty character string. The data must contain at least one character.
1 numeric only

Valid data contains numeric characters only.
1 maximum number of characters

Valid data contains at most the maximum number of characters specified.
1 four-digit year

Valid data is a character string representing a date with a four-digit year in the format
M/D/YYYY, where M is a number between 1 and 12 inclusive, D is a number between 1 and 31
inclusive, and YYYY is a four-digit number between 0001 and 4000 inclusive. For example,
1/30/3030 is a valid four-digit year value. However, 4/31/2013 is an invalid four-digit year
value because April does not have 31 days. Date validation supports forward slash (/), back
slash (\), and hyphen (-) as delimiters. However, the string cannot contain a mix of delimiters.
For example, 1\30-2013 is invalid.

Chapter 5 | Using the FileMaker API for PHP 41
1 time of day
Valid data is a character string representing a 12-hour time value in the one of these formats:
1 H
1 H:M
1 H:M:S
1 H:M:S AM/PM
1 H:M AM/PM
where H is a number between 1 and 12 inclusive; M and S are numbers between 1 and 60
inclusive.

The PHP engine pre-validation supports implicit checking of field data based on the type of the field:
1 date

A field defined as a date field is validated according to the rules of “four-digit year” validation,
except the year value can contain 0-4 digits (the year value can be empty). For example, 1/30
is a valid date even though it has no year specified.

1 time
A field defined as a time field is validated according to the rules of “time of day” validation,
except the hour component (H) can be a number between 1 and 24 inclusive to support 24-hour
time values.

1 timestamp
A field defined as a timestamp field is validated according to the rules of “time” validation for the
time component and according to the rules of “date” validation for the date component.

The FileMaker class cannot pre-validate all of the field validation options that are available in
FileMaker Pro. The following validation options cannot be pre-validated because they are
dependent on the state of all the data in the database at the time that the data is committed:
1 unique value
1 existing value
1 in range
1 member of value list
1 validate by calculation

Pre-validating records in a command
For a command object, use the validate() method to validate one field or the entire command
against the pre-validation rules enforceable by the PHP engine. If you pass the optional field name
argument, only that field is pre-validated.
If the pre-validation passes, then the validate() method returns TRUE. If the pre-validation
fails, then the validate() method returns a FileMaker_Error_Validation object containing
details about what failed to validate.

Chapter 5 | Using the FileMaker API for PHP 42
Pre-validating records
For a record object, use the validate() method to validate one field or all the fields in the record
against the pre-validation rules enforceable by the PHP engine. If you pass the optional field name
argument, only that field is pre-validated.
If the pre-validation passes, then the validate() method returns TRUE. If the pre-validation
fails, then the validate() method returns a FileMaker_Error_Validation object containing
details about what failed to validate.

Pre-validating fields
For a field object, use the validate() method to determine whether a given value is valid for a
field.
If the pre-validation passes, then the validate() method returns TRUE. If the pre-validation
fails, then the validate() method returns a FileMaker_Error_Validation object containing
details about what failed to validate.

Processing the validation errors
When pre-validation fails, the FileMaker_Error_Validation object returned contains a three-
element array for each validation failure:

1. The field object that failed pre-validation

2. A validation constant value that indicates the validation rule that failed:
1 - FILEMAKER_RULE_NOTEMPTY
2 - FILEMAKER_RULE_NUMERICONLY
3 - FILEMAKER_RULE_MAXCHARACTERS
4 - FILEMAKER_RULE_FOURDIGITYEAR
5 - FILEMAKER_RULE_TIMEOFDAY
6 - FILEMAKER_RULE_TIMESTAMP_FIELD
7 - FILEMAKER_RULE_DATE_FIELD
8 - FILEMAKER_RULE_TIME_FIELD

3. The actual value entered for the field that failed pre-validation

You can also use the following methods with a FileMaker_Error_Validation object:
1 Use the isValidationError() method to test whether the error is a validation error.
1 Use the numErrors() method to get the number of validation rules that failed.

Chapter 5 | Using the FileMaker API for PHP 43
Example

//Create an Add request

$addrequest = $fm->newAddCommand('test', array('join' => 'added', 'maxchars' =>
'abcx', 'field' => 'something' , 'numericonly' => 'abc'));

//Validate all fields

$result = $addrequest->validate();

//If the validate() method returned any errors, print the name of the field, the
error number, and the value that failed.

if(FileMaker::isError($result)){

echo 'Validation failed:'. "\n";

$validationErrors= $result->getErrors();

foreach ($validationErrors as $error) {

$field = $error[0];

echo 'Field Name: ' . $field->getName(). "\n";

echo 'Error Code: ' . $error[1] . "\n";

echo 'Value: ' . $error[2] . "\n";

}

}

Output

Validation failed:

Field Name: numericonly

Error Code: 2

Value: abc

Field Name: maxchars

Error Code: 3

Value: abcx

Chapter 5 | Using the FileMaker API for PHP 44
Handling errors

The FileMaker class defines the FileMaker_Error object to help you handle errors that occur in a
PHP solution.
An error can occur when a command runs. If an error does occur, the command returns a
FileMaker_Error object. It is a good practice to check the error that is returned when a command
runs.

Use the following methods to learn more about the error indicated in the FileMaker_Error object.
1 Test for whether a variable is a FileMaker Error object by calling the isError() method.
1 Get the number of errors that occurred by calling the numErrors() method.
1 Retrieve an array of arrays describing the errors that occurred by calling the getErrors()

method.
1 Display an error message by calling the getMessage() method.

Example

$result = $findCommand->execute();

if (FileMaker::isError($result)) {

 echo "<p>Error: " . $result->getMessage() . "</p>";

 exit;

}

For information about the error codes returned with the FileMaker Error object, see appendix A,
“Error codes for Custom Web Publishing with PHP.”

Chapter 6
Staging, testing, and monitoring a site
This chapter provides instructions for staging and testing a Custom Web Publishing site before
deploying it in a production environment. Instructions are also provided for using log files to
monitor the site during testing or after deployment.
Staging a Custom Web Publishing site

Before you can properly test your site, copy or move the required files to the correct locations on
the staging server(s).

To stage your site and prepare it for testing:

1. Complete all of the steps in chapter 3, “Preparing databases for Custom Web Publishing.”

2. Check that Custom Web Publishing with PHP has been enabled and properly configured in the
FileMaker Server Admin Console.

Note For instructions, see FileMaker Server Help.

3. Verify that the web server and the Web Publishing Engine are running.

4. Copy or move your site files to the web server component of your FileMaker Server deployment.
Copy or move your site files to the following directory on the web server machine:
1 IIS (Windows) through HTTP or HTTPS:
[drive]:\Program Files\FileMaker\FileMaker Server\HTTPServer\Conf
where [drive] is the drive on which the Web Publishing Engine component of your
FileMaker server deployment resides.

1 Apache (OS X) through HTTP: /Library/FileMaker Server/HTTPServer/htdocs
1 Apache (OS X) through HTTPS:
/Library/FileMaker Server/HTTPServer/htdocs/httpsRoot

Chapter 6 | Staging, testing, and monitoring a site 46
5. If you have not already done so, copy or move any referenced container objects to the
appropriate directory on the web server machine.
1 If the database file is properly hosted and accessible on the Database Server component of

the FileMaker Server deployment, and the container fields store the actual files in the
FileMaker database, then you don’t need to relocate the container field contents.

1 If a database container field stores a file reference instead of an actual file, then the
referenced container object must be stored in the FileMaker Pro Web folder when the record
is created or edited. To stage your site, you must copy or move the referenced containers to
a folder with the same relative location in the root folder of the web server software.

1 When you use FileMaker Pro to upload a database with container fields that store objects
externally, the externally stored container field data is uploaded to FileMaker Server as part of
the process. See FileMaker Pro Help for information on transferring the database files to
FileMaker Server.

1 When you manually upload a database that uses a container field with externally stored
objects, then you must copy or move the referenced objects into a subfolder of the
RC_Data_FMS folder, as described in “Container fields with externally stored data” on
page 18.

See “Publishing the contents of container fields on the web” on page 17.

6. Begin testing your site.
Testing a Custom Web Publishing site

Before notifying users that your Custom Web Publishing site is available, verify that it displays and
functions as expected.
1 Test features like finding, adding, deleting, and sorting records with different accounts and

privilege sets.
1 Verify that privilege sets are performing as expected by logging in with different accounts. Make

sure unauthorized users can’t access or modify your data.
1 Check all scripts to verify that the outcome is expected. See “FileMaker scripts and Custom

Web Publishing” on page 21 for information on designing web-friendly scripts.
1 Test your site with different operating systems and web browsers.
1 When creating solutions that use the FileMaker API for PHP, it is recommended that you build

your solutions with cookie support enabled. The FileMaker API for PHP has better response
times with cookies enabled. Cookies are not required to use Custom Web Publishing features,
but cookies do allow the Web Publishing Engine to cache session information.

Note If you have installed the web server, Web Publishing Engine, and the Database Server in
a single-machine deployment, you can view and test your site without using a network connection.
Move your site files to the appropriate directory on that machine, and enter the following URL in
your browser:

http://127.0.0.1/<site_path>

where <site_path> is the relative path to the homepage for your site.

Chapter 6 | Staging, testing, and monitoring a site 47
Monitoring your site

Use the following types of log files to monitor your Custom Web Publishing site and gather
information about web users who visit your site:
1 Web server access and error logs
1 Web Publishing Engine log
1 Web Server Module error log
1 Tomcat logs

Using the web server access and error logs
1 IIS (Windows): The Microsoft IIS web server generates an access log file and displays errors in

the Windows Event Viewer instead of writing them to a log file. The access log file, which is in
the W3C Extended Log File Format by default, is a record of all incoming HTTP requests to the
web server. You can also use the W3C Common Logfile Format for the access log. For more
information, see the documentation for the Microsoft IIS web server.

1 Apache (OS X only): The Apache web server generates an access log file and an error log file.
The Apache access log file, which is in the W3C Common Logfile Format by default, is a record
of all incoming HTTP requests to the web server. The Apache error log is a record of problems
involving processing HTTP requests. For more information on these log files, see the
documentation for the Apache web server.

Note For information on the W3C Common Logfile Format and the W3C Extended Log File
Format, see the World Wide Web Consortium website at http://www.w3.org.

Using the Web Publishing Engine log
By default, the Web Publishing Engine generates a log file called wpe.log that contains a record
of any Web Publishing Engine errors that have occurred, including application errors, usage
errors, and system errors. You can also have the Web Publishing Engine include information
related to Custom Web Publishing, such as end-user XML requests to generate web publishing
output or changes to the Custom Web Publishing settings.
Because the FileMaker API for PHP uses HTTP POST to access the Web Publishing Engine, the
wpe.log file does not log details about the PHP requests. You can use the wpe.log file to see when
users made PHP requests by looking at the XML requests that are logged.
The wpe.log file is located on the Web Publishing Engine component of the FileMaker Server
deployment:
1 IIS (Windows): [drive]:\Program Files\FileMaker\FileMaker
Server\HTTPServer\Logs\wpe.log
where [drive] is the primary drive from which the system is started.

1 Apache (OS X): /Library/FileMaker Server/HTTPServer/Logs/wpe.log

Chapter 6 | Staging, testing, and monitoring a site 48
Web Publishing Engine log settings

The wpe.log file is generated if the Enable logging for Web Publishing option is enabled in the
Admin Console.

The Error level messages setting is enabled by default. For information on setting these options
using the Admin Console, see FileMaker Server Help.

Important Over time, the wpe.log file may become very large. Use the Admin Console to set the
maximum size for the wpe.log file. When the wpe.log file reaches this maximum size, the Web
Publishing Engine copies the wpe.log file to a single backup file, wpe.log.1, and creates a new
wpe.log file. You may wish to save an archive of the wpe.log.1 file on a regular basis, if you want
more than one backup copy.

Web Publishing Engine log format

The wpe.log file uses the following format for each entry:
[TIMESTAMP_GMT] [WPC_HOSTNAME] [CLIENT_IP:PORT] [ACCOUNT_NAME] [MODULE_TYPE]
[SEVERITY] [FM_ERRORCODE] [RETURN_BYTES] [MESSAGE]

where:
1 [TIMESTAMP_GMT] is the date and time of the entry, in Greenwich Mean Time (GMT).
1 [WPC_HOSTNAME] is the machine name for the machine where the Web Publishing Engine

is installed.
1 [CLIENT_IP:PORT] is the IP address and port of the client where the XML request originated.
1 [ACCOUNT_NAME] is the account name used for logging into the hosted FileMaker database.
1 [MODULE_TYPE] is either: XML, for Custom Web Publishing with XML requests, or PHP, for

Custom Web Publishing with PHP requests.
1 [SEVERITY] is either INFO, indicating an informational message, or ERROR, indicating an

error message.
1 [FM_ERROR_CODE] is the error number returned for an error message. The error number

may be an error code for FileMaker databases (see “Error code numbers for FileMaker
databases” on page 51).
In addition, the error number may be an HTTP error number, prefixed by an “HTTP:” string.

1 [RETURN_BYTES] is the number of bytes returned by the request.
1 [MESSAGE] provides additional information about the log entry.

Logging option enabled Information recorded in wpe.log
Error level messages Any Web Publishing Engine errors that have occurred, including application errors,

usage errors, and system errors.

Info and Error Level
messages

Any errors as described above, and information about access to the Web Publishing
Engine. It contains a record of all end-user XML requests to generate Custom Web
Publishing output.

Chapter 6 | Staging, testing, and monitoring a site 49
Web Publishing Engine log message examples

The following examples show the types of messages that may be included in the wpe.log file:
1 When the Web Publishing Engine starts and stops

2013-06-02 15:15:31 -0700 - - - - INFO - - FileMaker Server
Web Publishing Engine started.

2013-06-02 15:46:52 -0700 - - - - INFO - - FileMaker Server
Web Publishing Engine stopped.

1 Successful or failed XML query requests
2013-06-02 15:21:08 -0700 WPC_SERVER 192.168.100.101:0 jdoe XML
INFO 0 3964 "/fmi/xml/fmresultset.xml?-db=Contacts&-
lay=Contact_Details&-findall"

2013-06-02 15:26:31 -0700 WPC_SERVER 192.168.100.101:0 jdoe XML
ERROR 5 596 "/fmi/xml/fmresultset.xml?-db=Contacts&-
layout=Contact_Details&-findall"

1 Scripting errors
2013-06-02 17:33:12 -0700 WPC_SERVER 192.168.100.101:0 jdoe - ERROR
4 - Web Scripting Error: 4, File: "10b_MeetingsUpload", Script: "OnOpen",
Script Step: "Show Custom Dialog"

1 Changes to the Custom Web Publishing settings
2013-06-09 10:59:49 -0700 WPC_SERVER 192.168.100.101:0 jdoe - INFO
- - XML Web Publishing Engine is enabled.

1 System errors
2013-06-02 15:30:42 -0700 WPC_SERVER 192.168.100.101:0 jdoe XML
ERROR - - Communication failed

Using the Web Server Module error log
If the web server is unable to connect to the Web Publishing Engine, the Web Server Module
generates a log file that records any errors with its operation. This log file is named
web_server_module_log.txt, and is located on the web server component of the FileMaker Server
deployment:
1 IIS (Windows): [drive]:\Program Files\FileMaker\FileMaker
Server\Logs\web_server_module_log.txt
where [drive] is the primary drive from which the system is started.

1 Apache (OS X): /Library/FileMaker Server/Logs/web_server_module_log.txt

Using the Tomcat logs
When FileMaker Server has a problem caused by an internal web server error, you may find it
helpful to view the Tomcat logs. The Tomcat logs are located on the web server component of the
FileMaker Server deployment:
1 IIS (Windows): [drive]:\Program Files\FileMaker\FileMaker
Server\Admin\admin-master-tomcat\logs/
where [drive] is the primary drive from which the system is started.

1 Apache (OS X): /Library/FileMaker Server/Admin/admin-master-tomcat/logs/

Chapter 6 | Staging, testing, and monitoring a site 50
Troubleshooting your site

If you have trouble viewing or using your site, verify the following:
1 The extended privileges in the database are set for Custom Web Publishing with PHP and

assigned to a user account. See “Enabling Custom Web Publishing with PHP for databases”
on page 14.

1 The database is hosted and opened by FileMaker Server. See FileMaker Server Help.
1 The database account name and password you are using, if any, are correct.
1 The web server and the Web Publishing Engine are running.
1 PHP Publishing is enabled in the Web Publishing Engine.

1 Open the FileMaker Server Technology Tests page in a browser:
http://<server>:16000/test

where <server> is the machine on which the FileMaker Server resides.
1 Click the link Test PHP Custom Web Publishing to open a PHP page that accesses the

FMServer_Sample test database.

For more information, see FileMaker Server Getting Started Guide and FileMaker Server Help.

Appendix A
Error codes for Custom Web Publishing with
PHP
The Web Publishing Engine supports two types of error codes that can occur for Custom Web
Publishing:
1 Database and data request errors. The Web Publishing Engine generates an error code

whenever data is requested from published database. The FileMaker API for PHP returns this
error code as a FileMaker_Error object. See the next section, “Error code numbers for
FileMaker databases.”

1 PHP errors. These errors are generated and returned by PHP components, including the cURL
module. See “Error code numbers for PHP components” on page 58.
Error code numbers for FileMaker databases

It is up to you, as the developer of the Custom Web Publishing solution, to check the value of the
returned error code and handle it appropriately. The Web Publishing Engine does not handle
database errors.

Error Number Description
-1 Unknown error

0 No error

1 User canceled action

2 Memory error

3 Command is unavailable (for example, wrong operating system, wrong mode, etc.)

4 Command is unknown

5 Command is invalid (for example, a Set Field script step does not have a calculation specified)

6 File is read-only

7 Running out of memory

8 Empty result

9 Insufficient privileges

10 Requested data is missing

11 Name is not valid

12 Name already exists

13 File or object is in use

14 Out of range

15 Can’t divide by zero

16 Operation failed, request retry (for example, a user query)

17 Attempt to convert foreign character set to UTF-16 failed

18 Client must provide account information to proceed

Appendix A | Error codes for Custom Web Publishing with PHP 52
19 String contains characters other than A-Z, a-z, 0-9 (ASCII)

20 Command or operation cancelled by triggered script

21 Request not supported (for example, when creating a hard link on a file system that does not
support hard links)

100 File is missing

101 Record is missing

102 Field is missing

103 Relationship is missing

104 Script is missing

105 Layout is missing

106 Table is missing

107 Index is missing

108 Value list is missing

109 Privilege set is missing

110 Related tables are missing

111 Field repetition is invalid

112 Window is missing

113 Function is missing

114 File reference is missing

115 Menu set is missing

116 Layout object is missing

117 Data source is missing

118 Theme is missing

130 Files are damaged or missing and must be reinstalled

131 Language pack files are missing (such as Starter Solutions)

200 Record access is denied

201 Field cannot be modified

202 Field access is denied

203 No records in file to print, or password doesn’t allow print access

204 No access to field(s) in sort order

205 User does not have access privileges to create new records; import will overwrite existing data

206 User does not have password change privileges, or file is not modifiable

207 User does not have sufficient privileges to change database schema, or file is not modifiable

208 Password does not contain enough characters

209 New password must be different from existing one

210 User account is inactive

211 Password has expired

212 Invalid user account and/or password. Please try again

213 User account and/or password does not exist

Error Number Description

Appendix A | Error codes for Custom Web Publishing with PHP 53
214 Too many login attempts

215 Administrator privileges cannot be duplicated

216 Guest account cannot be duplicated

217 User does not have sufficient privileges to modify administrator account

218 Password and verify password do not match

300 File is locked or in use

301 Record is in use by another user

302 Table is in use by another user

303 Database schema is in use by another user

304 Layout is in use by another user

306 Record modification ID does not match

307 Transaction could not be locked because of a communication error with the host

308 Theme is locked and in use by another user

400 Find criteria are empty

401 No records match the request

402 Selected field is not a match field for a lookup

403 Exceeding maximum record limit for trial version of FileMaker Pro

404 Sort order is invalid

405 Number of records specified exceeds number of records that can be omitted

406 Replace/Reserialize criteria are invalid

407 One or both match fields are missing (invalid relationship)

408 Specified field has inappropriate data type for this operation

409 Import order is invalid

410 Export order is invalid

412 Wrong version of FileMaker Pro used to recover file

413 Specified field has inappropriate field type

414 Layout cannot display the result

415 One or more required related records are not available

416 A primary key is required from the data source table

417 Database is not a supported data source

418 Internal failure in INSERT operation into a field

500 Date value does not meet validation entry options

501 Time value does not meet validation entry options

502 Number value does not meet validation entry options

503 Value in field is not within the range specified in validation entry options

504 Value in field is not unique as required in validation entry options

505 Value in field is not an existing value in the database file as required in validation entry options

506 Value in field is not listed on the value list specified in validation entry option

Error Number Description

Appendix A | Error codes for Custom Web Publishing with PHP 54
507 Value in field failed calculation test of validation entry option

508 Invalid value entered in Find mode

509 Field requires a valid value

510 Related value is empty or unavailable

511 Value in field exceeds maximum field size

512 Record was already modified by another user

513 No validation was specified but data cannot fit into the field

600 Print error has occurred

601 Combined header and footer exceed one page

602 Body doesn’t fit on a page for current column setup

603 Print connection lost

700 File is of the wrong file type for import

706 EPSF file has no preview image

707 Graphic translator cannot be found

708 Can’t import the file or need color monitor support to import file

709 QuickTime movie import failed

710 Unable to update QuickTime file reference because the database file is read-only

711 Import translator cannot be found

714 Password privileges do not allow the operation

715 Specified Excel worksheet or named range is missing

716 A SQL query using DELETE, INSERT, or UPDATE is not allowed for ODBC import

717 There is not enough XML/XSL information to proceed with the import or export

718 Error in parsing XML file (from Xerces)

719 Error in transforming XML using XSL (from Xalan)

720 Error when exporting; intended format does not support repeating fields

721 Unknown error occurred in the parser or the transformer

722 Cannot import data into a file that has no fields

723 You do not have permission to add records to or modify records in the target table

724 You do not have permission to add records to the target table

725 You do not have permission to modify records in the target table

726 There are more records in the import file than in the target table. Not all records were imported

727 There are more records in the target table than in the import file. Not all records were updated

729 Errors occurred during import. Records could not be imported

730 Unsupported Excel version (convert file to Excel 2007/2008 format or a later supported
version and try again)

731 File you are importing from contains no data

732 This file cannot be inserted because it contains other files

733 A table cannot be imported into itself

734 This file type cannot be displayed as a picture

Error Number Description

Appendix A | Error codes for Custom Web Publishing with PHP 55
735 This file type cannot be displayed as a picture. It will be inserted and displayed as a file

736 There is too much data to be exported to this format. It will be truncated.

737 Bento table you are importing is missing

738 The theme you are importing already exists

800 Unable to create file on disk

801 Unable to create temporary file on System disk

802 Unable to open file.
This error can be cause by one or more of the following:
1 Invalid database name
1 File is closed in FileMaker Server
1 Invalid permission

803 File is single user or host cannot be found

804 File cannot be opened as read-only in its current state

805 File is damaged; use Recover command

806 File cannot be opened with this version of FileMaker Pro

807 File is not a FileMaker Pro file or is severely damaged

808 Cannot open file because access privileges are damaged

809 Disk/volume is full

810 Disk/volume is locked

811 Temporary file cannot be opened as FileMaker Pro file

812 Exceeded host’s capacity

813 Record Synchronization error on network

814 File(s) cannot be opened because maximum number is open

815 Couldn’t open lookup file

816 Unable to convert file

817 Unable to open file because it does not belong to this solution

819 Cannot save a local copy of a remote file

820 File is in the process of being closed

821 Host forced a disconnect

822 FMI files not found; reinstall missing files

823 Cannot set file to single-user, guests are connected

824 File is damaged or not a FileMaker file

825 File is not authorized to reference the protected file

826 File path specified is not a valid file path

850 Path is not valid for the operating system

851 Cannot delete an external file from disk

852 Cannot write a file to the external storage

853 One or more containers failed to transfer

900 General spelling engine error

Error Number Description

Appendix A | Error codes for Custom Web Publishing with PHP 56
901 Main spelling dictionary not installed

902 Could not launch the Help system

903 Command cannot be used in a shared file

905 No active field selected; command can only be used if there is an active field

906 Current file is not shared; command can be used only if the file is shared

920 Can’t initialize the spelling engine

921 User dictionary cannot be loaded for editing

922 User dictionary cannot be found

923 User dictionary is read-only

951 An unexpected error occurred

954 Unsupported XML grammar

955 No database name

956 Maximum number of database sessions exceeded

957 Conflicting commands

958 Parameter missing in query

959 Custom Web Publishing technology is disabled

960 Parameter is invalid

1200 Generic calculation error

1201 Too few parameters in the function

1202 Too many parameters in the function

1203 Unexpected end of calculation

1204 Number, text constant, field name or "(" expected

1205 Comment is not terminated with "*/"

1206 Text constant must end with a quotation mark

1207 Unbalanced parenthesis

1208 Operator missing, function not found or "(" not expected

1209 Name (such as field name or layout name) is missing

1210 Plug-in function has already been registered

1211 List usage is not allowed in this function

1212 An operator (for example, +, -, *) is expected here

1213 This variable has already been defined in the Let function

1214 AVERAGE, COUNT, EXTEND, GETREPETITION, MAX, MIN, NPV, STDEV, SUM and
GETSUMMARY: expression found where a field alone is needed

1215 This parameter is an invalid Get function parameter

1216 Only Summary fields allowed as first argument in GETSUMMARY

1217 Break field is invalid

1218 Cannot evaluate the number

1219 A field cannot be used in its own formula

1220 Field type must be normal or calculated

Error Number Description

Appendix A | Error codes for Custom Web Publishing with PHP 57
1221 Data type must be number, date, time, or timestamp

1222 Calculation cannot be stored

1223 Function referred to is not yet implemented

1224 Function referred to does not exist

1225 Function referred to is not supported in this context

1300 The specified name can’t be used

1301 One of the parameters of the function being imported or pasted has the same name as a
function already in the file

1400 ODBC client driver initialization failed; make sure the ODBC client drivers are properly
installed

1401 Failed to allocate environment (ODBC)

1402 Failed to free environment (ODBC)

1403 Failed to disconnect (ODBC)

1404 Failed to allocate connection (ODBC)

1405 Failed to free connection (ODBC)

1406 Failed check for SQL API (ODBC)

1407 Failed to allocate statement (ODBC)

1408 Extended error (ODBC)

1409 Extended error (ODBC)

1410 Extended error (ODBC)

1411 Extended error (ODBC)

1412 Extended error (ODBC)

1413 Extended error (ODBC)

1414 SQL statement is too long

1450 Action requires PHP privilege extension

1451 Action requires that current file be remote

1501 SMTP authentication failed

1502 Connection refused by SMTP server

1503 Error with SSL

1504 SMTP server requires the connection to be encrypted

1505 Specified authentication is not supported by SMTP server

1506 Email message(s) could not be sent successfully

1507 Unable to log in to the SMTP server

1550 Cannot load the plug-in or the plug-in is not a valid plug-in

1551 Cannot install the plug-in. Cannot delete an existing plug-in or cannot write to the folder or disk

1626 Protocol is not supported

1627 Authentication failed

1628 There was an error with SSL

1629 Connection timed out; the timeout value is 60 seconds

Error Number Description

Appendix A | Error codes for Custom Web Publishing with PHP 58
1630 URL format is incorrect

1631 Connection failed

Error Number Description
Error code numbers for PHP components

The FileMaker API for PHP makes use of several PHP components. These PHP components may
return additional error codes that are not listed above.
For example, if the Web Publishing Core or FileMaker Server services are not running, you may
receive the cURL module error CURLE_GOT_NOTHING (52).
For information on PHP related error codes, see the PHP website at http://php.net.

Index
A
access log files for web server, described 47
access privileges 16
accounts and privileges

enabling for Custom Web Publishing 14
Guest account 16
scripts 21

Add command 29
add() method 37
addSortRule() method 36
Admin Console 13, 14
application log 47

C
Change Password script 16
clearSortRules() method 36
client URL library 11
commit() method 29
Compound Find

command 37
example 38

connecting
to a FileMaker database 28
to a FileMaker Server 28

container fields
how web users access data 21
publishing contents of 17
with externally stored data 18
with referenced files 18

createRecord() method 29
creating a record 29
cURL 11
cURL module errors 58
Custom Web Publishing

definition 7
enabling in database 14
enabling in Web Publishing Engine 15
extended privilege for 14
restricting IP address access in web server 15
scripts 23
using scripts 21
with PHP 9
with XML 9

D
database error code numbers 51
database object 28
database sessions, persistence 14, 16
databases, protecting when published 15
date field 41
date representation 39
Delete command 30
delete() method 30, 34
deleting a record 30
documentation 6
Duplicate command 29
duplicating a record 29
dynamic IP address 11

E
Edit command 29
editing a record 29
electronic documentation 6
enabling Custom Web Publishing in database 14
errors

database error code numbers 51
handling 44
log files for web server 47

examples for FileMaker API for PHP 27
existing value validation 41
extended privilege for Custom Web Publishing 14
external SQL data source 14

F
field

date 41
four-digit year 40
maximum number of characters 40
not empty 40
numeric only 40
time 41
time of day 41
timestamp 41

FileMaker API for PHP
definition 9
examples 27
manual installation 12
reference 26
tutorial 27

FileMaker class 27
FileMaker class objects

database 28
definition 28
record 29
related set 32

FileMaker command objects
Add 29
Compound Find command 37
Delete 30
Duplicate 29
Edit 29
Find All command 36
Find Any command 37
Find command 36, 37

60
FileMaker Server
documentation 6
installing 6

FileMaker Server Admin
see Admin Console

FileMaker WebDirect
definition 7
documentation 6

Find All command 36
Find Any command 37
Find command 37
Find command objects 36
four-digit year field 40

G
getContainerData() method 17, 39
getContainerDataURL() method 18, 39
getDatabase() method 32
getErrors() method 44
getFetchCount() method 39
getField() method 39
getFieldAsTimestamp() method 39
getFields() method 32, 39
getFoundSetCount() method 39
getLayout() method 32
getMessage() method 44
getName() method 32, 33
getRange() method 36
getRecords() method 39
getRelatedSet() method 33
getRelatedSets() method 33
getValueListsTwoFields() method 35
getValueListTwoFields() method 35
Guest account

disabling 16
enabling 16

H
handling errors 44

I
in range validation 41
installation documentation 6
installation of the FileMaker API for PHP 12
isError() method 44
isValidationError() method 42

J
JDBC documentation 6

L
Latin-1 encoding 25
layouts 32
listFields() method 32
listLayouts() method 32
listRelatedSets() method 32
listScripts() method 30
listValueLists() method 32, 34
log files

described 47
Tomcat 49
web server access 47
web_server_module_log.txt 49
wpe.log 48

M
manual installation of the FileMaker API for PHP 12
maximum number of characters field 40
member of value list validation 41
methods

add() 37
addSortRule() 36
clearSortRules() 36
commit() 29
createRecord() 29
delete() 30, 34
getContainerData() 17, 39
getContainerDataURL() 18, 39
getDatabase() 32
getErrors() 44
getFetchCount() 39
getField() 39
getFieldAsTimestamp() 39
getFields() 32, 39
getFoundSetCount() 39
getLayout() 32
getMessage() 44
getName() 32, 33
getRange() 36
getRecords() 39
getRelatedSet() 33
getRelatedSets() 33
getValueListsTwoFields() 35
getValueListTwoFields() 35
isError() 44
isValidationError() 42
listFields() 32
listLayouts() 32
listRelatedSets() 32
listScripts() 30
listValueLists() 32, 34
newAddCommand() 29
newCompoundFindCommand() 37
newDeleteCommand() 30
newDuplicateCommand() 29
newEditCommand() 29
newFindAllCommand() 36
newFindAnyCommand() 37
newFindCommand() 37
newFindRequest() 37
newPerformScriptCommand() 30
newRelatedRecord() 34
numErrors() 42, 44
setLogicalOperator() 36

61
setOmit() 37
setPreCommandScript() 31, 36
setPreSortScript() 31, 36
setProperty() 28
setRange() 36
setRelatedSetsFilters() 40
setResultsLayout() 32
setScript() 31, 36
validate() 41

monitoring websites 47

N
newAddCommand() method 29
newCompoundFindCommand() method 37
newDeleteCommand() method 30
newDuplicateCommand() method 29
newEditCommand() method 29
newFindAllCommand() method 36
newFindAnyCommand() method 37
newFindCommand() method 37
newFindRequest() method 37
newPerformScriptCommand() method 30
newRelatedRecord() method 34
non-empty field 40
numbers for database error codes 51
numeric only field 40
numErrors() method 42, 44

O
ODBC documentation 6
ODBC limitations 14
online documentation 6
OS X Server Admin 11
overview of PHP publishing 24

P
passwords

Change Password script 16
defining for Custom Web Publishing 14
no login password 16

performing find requests 36
persistent database sessions 14, 16
PHP

advantages 9
enabling in database 14
errors 58
summary of steps for publishing 24
supported version 12
troubleshooting 50
website testing 46

PHP 5 11
PHP API for Custom Web Publishing 9
Portal Setup dialog box 40
portals 32
pre-validation
commands 40
date 41
fields 42
four-digit year 40
maximum number of characters 40
not empty 40
numeric only 40
records 42
time 41
time of day 41
timestamp 41

privilege set, assigning for Custom Web Publishing 14
processing a result set 39
processing a Web Publishing Engine request 8
progressive download 17, 20
protecting published databases 15
publishing on the web

container field objects 17
database error codes 51
protecting databases 15
QuickTime movies 18
using PHP 24

Q
QuickTime movies, publishing on the web 18

R
record object 29
records 29
reference information 26
related set object 32
Re-Login script 16
result set 39

S
SAT

see Admin Console
scripts

accounts and privileges 21
Change Password 16
in Custom Web Publishing 21
Re-Login 16
tips and considerations 21
triggers 23

security
accounts and passwords 15
documentation 8
guidelines for protecting published databases 15
restricting access from IP addresses 15

Server Admin tool
See OS X Server Admin

server requirements 10
setLogicalOperator() method 36
setOmit() method 37
setPreCommandScript() method 31, 36
setPreSortScript() method 31, 36

62
setProperty() method 28
setRange() method 36
setRelatedSetsFilters() method 40
setResultsLayout() method 32
setScript() method 31, 36
SSL (Secure Sockets Layer) encryption 15
staging websites 45
static IP address 11
static publishing, definition 7
streaming. See progressive download

T
technology tests 50
testing PHP publishing 50
testing websites 46
time field 41
time of day field 41
timestamp field 39, 41
Tomcat logs 49
triggers 23
troubleshooting websites

Custom Web Publishing websites 46
verifying setup 50

tutorial on FileMaker API for PHP 27

U
Unicode 25
unique value validation 41
Unix timestamp 39
user names

defining for Custom Web Publishing 14
using

layouts 32
portals 32
records 29
scripts 30
value lists 34

UTF-8 encoding 25

V
validate by calculation 41
validate() method 41
validation

commands 40
date 41
fields 42
four-digit year 40
maximum number of characters 40
not empty 40
numeric only 40
records 42
time 41
time of day 41
timestamp 41

value lists 34
W
Web folder, copying container field objects 18
Web Publishing Engine

application log 47
described 8
generated error codes 51
request processing 8

web server
log files 47

web users
using container field data 21

web_server_module_log.txt log file 49
websites

FileMaker support pages 6
monitoring 47
staging 45
testing 46
troubleshooting 50

wpe.log log file 48

X
XML advantages 9
XML custom web publishing 9

	Preface
	About this guide

	Chapter 1 Introducing Custom Web Publishing
	About the Web Publishing Engine
	How a Web Publishing Engine request is processed

	Custom Web Publishing with PHP
	Custom Web Publishing with XML
	Comparing PHP to XML
	Reasons to choose PHP
	Reasons to choose XML

	Chapter 2 About Custom Web Publishing with PHP
	Key features in Custom Web Publishing with PHP
	Custom Web Publishing requirements
	What is required to publish a database using Custom Web Publishing
	What web users need to access a Custom Web Publishing solution
	Connecting to the Internet or an intranet

	Manually installing the FileMaker API for PHP
	Where to go from here

	Chapter 3 Preparing databases for Custom Web Publishing
	Enabling Custom Web Publishing with PHP for databases
	Creating layouts for Custom Web Publishing with PHP
	Protecting your published databases
	Accessing a protected database
	Publishing the contents of container fields on the web
	Container fields embedded in a database
	Container fields with referenced files
	Container fields with externally stored data
	How web users view container field objects

	FileMaker scripts and Custom Web Publishing
	Script tips and considerations
	Script behavior in Custom Web Publishing solutions
	Script triggers and Custom Web Publishing solutions

	Chapter 4 Overview of Custom Web Publishing with PHP
	How the Web Publishing Engine works with PHP solutions
	General steps for Custom Web Publishing with PHP

	Chapter 5 Using the FileMaker API for PHP
	Where to get additional information
	FileMaker API for PHP Reference
	FileMaker API for PHP Tutorial
	FileMaker API for PHP Examples

	Using the FileMaker class
	FileMaker class objects
	FileMaker command objects

	Connecting to a FileMaker database
	Working with records
	Creating a record
	Duplicating a record
	Editing a record
	Deleting a record

	Running FileMaker scripts
	Obtaining the list of available scripts
	Running a FileMaker script
	Running a script before executing a command
	Running a script before sorting a result set
	Running a script after the result set is generated
	Script execution order

	Working with FileMaker layouts
	Using portals
	Listing the portals defined on a specific layout
	Obtaining portal names for a specific result object
	Obtaining information about portals for a specific layout
	Obtaining information for a specific portal
	Obtaining the table name for a portal
	Obtaining the portal records for a specific record
	Creating a new record in a portal
	Deleting a record from a portal

	Using value lists
	Obtaining the names of all value lists for a specific layout
	Obtaining an array of all value lists for a specific layout
	Obtaining the values for a named value list

	Performing find requests
	Using the Find All command
	Using the Find Any command
	Using the Find command
	Using a Compound Find command
	Processing the records in a result set
	Filtering portal rows returned by find requests

	Pre-validating commands, records, and fields
	Pre-validating records in a command
	Pre-validating records
	Pre-validating fields
	Processing the validation errors

	Handling errors

	Chapter 6 Staging, testing, and monitoring a site
	Staging a Custom Web Publishing site
	Testing a Custom Web Publishing site
	Monitoring your site
	Using the web server access and error logs
	Using the Web Publishing Engine log
	Using the Web Server Module error log
	Using the Tomcat logs

	Troubleshooting your site

	Appendix A Error codes for Custom Web Publishing with PHP
	Error code numbers for FileMaker databases
	Error code numbers for PHP components

	Index

